Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Томский политехнический университет»

На правах рукописи

Орехов Кирилл Александрович

ИНТЕГРИРУЕМЫЕ СИСТЕМЫ, АССОЦИИРОВАННЫЕ С ГЕОМЕТРИЕЙ ЭКСТРЕМАЛЬНЫХ ЧЕРНЫХ ДЫР ВБЛИЗИ ГОРИЗОНТА СОБЫТИЙ

01.04.02 - Теоретическая физика

Диссертация на соискание ученой степени кандидата физико-математических наук

> Научный руководитель доктор физико-математических наук, профессор РАН Галажинский Антон Владимирович

Томск — 2016

Оглавление

Введение

1	Γeo	метрия экстремальных черных дыр вблизи горизонта событий 1		
	1.1	Метри	ка Керра вблизи горизонта событий	12
	1.2	Метри	ка Керра–Ньюмана–АдС вблизи горизонта событий	15
	1.3	Метрика Мелвина–Керра вблизи горизонта событий		18
	1.4	Метрика Майерса–Перри общего вида		21
	1.5	Метрика экстремальной черной дыры Майерса–Перри вблизи гори-		
		зонта (событий	22
		1.5.1	Случай $D = 2n + 1$ измерений	22
		1.5.2	Случай $D = 2n$ измерений	24
	1.6	Метри	ка Майерса–Перри–АдС общего вида	25
	1.7	Метри	ка экстремальной черной дыры Майерса–Перри–АдС вблизи	
		горизонта событий		27
		1.7.1	Случай $D = 2n + 1$ измерений	27
		1.7.2	Случай $D = 2n$ измерений	29
	1.8	Метрика Майерса–Перри при несовпадающих параметрах вращения		30
	1.9	Геометрия экстремальных черных дыр вблизи горизонта и конформ-		
		ные инварианты		35
		1.9.1	Метрика Керра–НУТ вблизи горизонта событий и конформ-	
			ные инварианты	35

 $\mathbf{5}$

		1.9.2	D=5метрика Майерса–Перри-НУТ вблизи горизонта со-				
			бытий и конформные инварианты	37			
2	Инт	Антегрируемые системы эссониированные с геометрией экстре-					
	мальных черных лыр вблизи горизонта событий						
	2.1	Конфо	ормная механика, ассоциированная с геометрией экстремаль-				
		ной че	ерной дыры Керра	47			
	2.2	Конфо	ормная механика, ассоциированная с геометрией экстремаль-				
		ной че	ерной дыры Керра–Ньюмана–АдС	50			
	2.3	Сфери	ическая механика	53			
2.4 Конформная механика, ассоциированная с геомет			ормная механика, ассоциированная с геометрией экстремаль-				
		ной че	ерной дыры Майерса–Перри в $D = 2n + 1$	56			
	2.5	Конфо	эрмная механика, ассоциированная с геометрией экстремаль-				
		ной че	ерной дыры Майерса–Перри в $D=2n$	59			
	2.6	Конфо	эрмная механика, ассоциированная с геометрией экстремаль-				
		ной че	ерной дыры Майерса–Перри–АдС в $D=2n+1$	61			
2.7 Конформная механика, ассоциированная с геометрией			ормная механика, ассоциированная с геометрией экстремаль-				
		ной че	ерной дыры Майерса–Перри–АдС в $D=2n$	63			
	2.8 Унитарная симметрия и интегрируемость сферической механ		рная симметрия и интегрируемость сферической механики	65			
		2.8.1	Максимальная суперинтегрируемость редуцированной сфе-				
			рической механики	65			
		2.8.2	Суперинтегрируемость нередуцированной сферической ме-				
			ханики	70			
3	Гео	метрия	а экстремальных черных дыр вблизи горизонта событий	Ĺ			
	и су	уперси	мметричная механика	75			
	3.1 Алгебра суперсимметрии AdS_2 и $\mathcal{N}=2$ суперчастица						
	3.2	$\mathcal{N}=2$ суперчастица вблизи горизонта событий экстремальной чер-					
		ной дн	ыры Керра	80			

Заключение		
	ной дыры Мелвина–Керра	85
3.4	$\mathcal{N}=2$ суперчастица вблизи горизонта событий экстремальной чер-	
	ной дыры Керра-Ньюмана-АдС	82
3.3	$\mathcal{N}=2$ суперчастица вблизи горизонта событий экстремальной чер-	

Введение

Центральной проблемой современной физики фундаментальных взаимодействий элементарных частиц является концептуальное обоснование наблюдаемых явлений в рамках единой схемы. Наиболее успешным примером подобного рода можно считать объединение фундаментальных взаимодействий – электромагнитного, слабого и сильного – в единую Стандартную модель элементарных частиц, являющуюся калибровочной теорией поля с калибровочной группой $U(1) \times$ $SU(2) \times SU(3)$. Не прекращается деятельность по включению в единую схему и гравитационного взаимодействия. Одной из наиболее перспективных теорий такого рода является суперсимметричная теория струн [1]. Одним из ее наиболее значимых успехов последнего времени стало описание энтропии черных дыр в терминах струнных состояний [2].

В контексте развития идей теории струн, в ходе последних двух десятилетий наиболее пристальное внимание исследователей получили так называемые преобразования дуальности [3, 4, 5], которые позволили установить соответствие между теориями поля, которые ранее рассматривались как существенно различные. В частности, некоторые конформные теории поля в *d*-мерном пространстве–времени могут быть описаны в терминах супергравитации и теории струн в пространстве, являющемся произведением (*d* + 1)-мерного пространства анти-де Ситтера и компактного многообразия (так называемое АдС/КТП–соответствие). Наиболее впечатляющим примером такого соответствия является связь между $\mathcal{N} = 4$ суперсиметричной теорией поля Янга-Миллса в четырехмерном пространстве и IIB супергравитацией в пространстве $AdS_5 \times S^5$ [3]. Одним из важных ответвлений АдС/КТП–соответствия является построение конформной теории поля, дуальной экстремальной черной дыре Керра вблизи горизонта событий – так называемое Керр/КТП–соответствие [6] (см. также обзорные работы [7, 8]). Интерес к данной проблеме в значительной степени был мотивирован более ранней работой Бардина и Горовица [9], в которой было показано, что вблизи горизонта событий группа изометрии метрики Керра $\mathcal{R}^1 \times U(1)$ расширяется до $SO(2,1) \times U(1)$. Позже было установлено, что конформная симметрия, описываемая группой SO(2,1), характерна для широкого класса экстремальных черных дыр вблизи горизонта событий [10, 11, 12].

В контексте Керр/КТП-соответствия рассматриваются возбуждения метрики вблизи горизонта событий, которые контролируются определенными граничными условиями на бесконечности. С каждым набором граничных условий ассоциируется асимптотическая группа симметрий, причем, согласно исходной работе [6], конформный фактор SO(2,1) не играет существенной роли, а U(1)-фактор в исходной группе изометрий метрики расширяется до алгебры Вирасоро асимптотических симметрий. Случай некиральной алгебры Вирасоро был исследован в работе [13]. Вычисление центрального заряда в алгебре Вирасоро и использование формулы Карди, известной в конформной теории поля, позволяют воспроизвести значение энтропии экстремальной черной дыры Керра в терминах дуальной конформной теории поля [6]. Предложенный в работе [6] алгоритм был успешно применен для вычисления энтропии других черных дыр, в том числе в произвольной размерности, каждый раз давая согласующиеся результаты. Важно подчеркнуть, что вычисленная таким образом энтропия черной дыры находится в соответствии с результатами, полученными в рамках теории струн [2] и теории петлевой гравитации [14], где значение энтропии было установлено путем прямого подсчета числа микросостояний на поверхности горизонта событий.

Конформную симметрию, характерную для черной дыры Керра вблизи горизонта событий, можно обнаружить также и в решениях уравнений Эйнштейна– Максвелла. Одним из примеров такого рода является черная дыра Мелвина– Керра, которая может быть построена из решения Керра посредством преобразований Гаррисона [15, 16, 17]. Преобразования Гаррисона изменяют фоновую геометрию и приводят к появлению потенциала магнитного поля. Полученное таким образом решение уравнений Эйнштейна–Максвелла называется намагниченным. В последнее время наблюдается заметный интерес к подобным расширениям [18]– [23]. В частности, в работе [21] было показано как обобщить соответствие между черной дырой Райсснера–Нордстрема и конформной теорией поля на случай намагниченной черной дыры, а в работах [22, 23] Керр/КТП–соответствие было обобщено на случай черной дыры Мелвина–Керра.

Несмотря на то, что SO(2,1)-симметрия экстремальной черной дыры Керра вблизи горизонта событий пока не нашла непосредственного применения в контексте Керр/КТП-соответствия, ее приложение к более традиционным вопросам представляет несомненный интерес. В частности, модель массивной релятивистской частицы, движущейся вблизи горизонта событий экстремальной черной дыры Керра, является конформно-инвариантной теорией.

Изучению конформной механики с расширенной суперсимметрией, возникающей в контексте геометрии экстремальных черных дыр, посвящено большое число работ [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. С одной стороны, интерес к такого рода моделям обусловлен изучением различных аспектов АдС/КТП–соответствия. С другой стороны, в работах [39, 40] была высказана гипотеза о том, что изучение конформно–инвариантных моделей частиц может обеспечить важную информацию о квантовых свойствах черных дыр. Данное предположение породило отдельное активно разрабатываемое направление исследований [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58].

Отметим еще несколько обстоятельств, стимулирующих интерес к конформной и суперконформной механике. Имеются основания ожидать, что суперзаряды, характеризующие модели суперчастиц вблизи горизонта событий экстремальных черных дыр, могут дать ключ к пониманию структуры спиноров Киллинга, являющихся важной геометрической характеристикой фонового многообразия в суперсимметричном случае [59]. Такие системы допускают дуальное описание в терминах традиционной суперконформной механики и служат основой для построения принципиально новых $d = 1, \mathcal{N} = 4$ суперконформных систем [43, 48]. Модели такого рода представляют собой удобную лабораторию для развития методов квантования частиц и струн в пространстве АдС [60, 61]. В частности, в недавней работе [62] было произведено квантование массивной суперчастицы на фактор–пространстве OSP(1|2)/SO(1,1). Кроме того, в недавних работах [63, 64] была предложена процедура построения редуцированной интегрируемой системы по конформной механике общего вида, позволяющая отделить радиальную часть модели от угловой. С последней можно связать отдельную интегрируемую систему [65]. В частности, в работах [66, 67, 68] были построены новые максимально суперинтегрируемые системы, ассоциированные с геометрией вращающихся экстремальных черных дыр вблизи горизонта событий.

Следует подчеркнуть, что построение и исследование новых интегрируемых систем механики и теории поля представляет собой самостоятельное и активно развивающееся направление теоретической и математической физики. В прикладных задачах свойство интегрируемости играет исключительно важную роль. В частности, оно существенно упрощает процедуру построения явного решения уравнений движения, а в некоторых случаях позволяет выразить общее решение через интегралы движения с привлечением только алгебраических операций. По-настоящему интенсивное развитие данная область получила в последние три десятилетия (см., например, [69, 70] и цитируемую там литературу), когда для построения новых моделей такого типа был применен анализ Пенлеве, метод, основанный на построении пары Лакса, а также подход, основанный на разделении переменных в уравнении Гамильтона–Якоби.

Подытоживая все вышесказанное, можно сделать вывод об актуальности исследований, направленных на систематическое изучение интегрируемых систем, ассоциированных с геометрией экстремальных черных дыр вблизи горизонта событий, и их суперсимметричных расширений. Основными задачами диссертационной работы являлись следующие:

- 1. Систематическое изучение геометрии экстремальных черных дыр вблизи горизонта событий и разработка новых методов их построения;
- 2. Построение новых интегрируемых систем, ассоциированных с геометрией экстремальных черных дыр вблизи горизонта событий;
- Построение новых моделей N = 2 суперчастиц, движущихся вблизи горизонта событий экстремальных черных дыр.

Теоретическая и практическая значимость значимость работы заключается в следующем:

- Результаты диссертационной работы представляют интерес в контексте общего развития теории интегрируемых систем многих частиц и суперсимметричной квантовой механики.
- 2. Результаты диссертационной работы открывают новые возможности для описания геометрии экстремальных черных дыр вблизи горизонта событий на теоретико–групповом языке.
- Результаты диссертационной работы актуальны в контексте изучения Керр/ КТП-соответствия и для построения микроскопического описания экстремальных черных дыр вблизи горизонта событий.

Методология и методы исследования:

В диссертационной работе были использованы методы гамильтоновой механики, теории интегрируемых систем, теории групп, дифференциальной геометрии, общей теории относительности, теория дифференциальных уравнений в частных производных, и теория суперсимметрии.

Степень достоверности:

Для решения поставленных задач были использованы стандартные методы теоретической и математической физики. Результаты диссертации опубликованы в рецензируемых журналах и прошли апробацию в виде докладов на научных конференциях. Следствия из полученных результатов для различных частных случаев совпадают с результатами, полученными другими авторами.

Диссертация состоит из введения, трех глав, заключения и списка литературы. Первая глава диссертации посвящена систематическому описанию процедуры построения метрики, описывающей геометрию экстремальной черной дыры вблизи горизонта событий. Последовательно изучаются случаи экстремальной черной дыры Керра, Керра–Ньюмана–АдС, Майерса–Перри, Майерса–Перри–АдС и Мельвина–Керра. Обсуждается группа изометрии и скрытые симметрии указанных пространств. Предложен метод прямого построения метрики Керра–НУТ вблизи горизонта событий и метрики Майерса–Перри с НУТ–зарядами в D = 5вблизи горизонта событий, основанный на использовании конформных инвариантов.

Вторая глава диссертации посвящена построению и изучению интегрируемых систем, ассоциированных с геометрией экстремальных черных дыр вблизи горизонта событий. В основу рассмотрения положена гамильтонова механика конформной частицы на искривленном внешнем фоне, разбиение конформной механики общего вида на радиальную и угловую части, выделение углового сектора в качестве самостоятельной динамической системы и редукция по циклическим переменным. Для редуцированных моделей выполнен анализ суперинтегрируемости. Приведен полный набор функционально–независимых интегралов движения.

В третьей главе диссертации строятся и изучаются модели $\mathcal{N} = 2$ суперчастиц, ассоциированные с геометрией Керра–Ньюмана-АдС и Мельвина–Керра вблизи горизонта событий. Построены полные наборы интегралов движения, образующих суперконформную алгебру, и показана единственность предложенного суперрасширения.

В заключении сформулированы основные результаты, полученные в работе и выносимые на защиту.

Диссертация выполнена под руководством профессора А. В. Галажинского,

которому автор выражает благодарность за помощь при выполнении работы.

Глава 1

Геометрия экстремальных черных дыр вблизи горизонта событий

В данной главе описывается общепринятая процедура построения геометрии экстремальной черной дыры вблизи горизонта событий. В качестве нового примера такого рода строится метрика Майерса–Перри–АдС для случая совпадающих параметров вращения. Излагается новый метод построения метрик вблизи горизонта событий, основанный на использовании конформных инвариантов.

1.1 Метрика Керра вблизи горизонта событий

Современные исследования геометрии экстремальных черных дыр вблизи горизонта событий берут свое начало от работы Дж. Бардина и Г. Горовица [9], посвященной черной дыре Керра в D = 4. В данном разделе мы кратко изложим основные положения работы [9], необходимые для дальнейшего рассмотрения.

В координатах Бойера–Линдквиста метрика Керра имеет вид:

$$ds^{2} = -e^{2\chi}dt^{2} + e^{2\psi}(d\varphi - \omega dt)^{2} + \rho^{2}(\Delta^{-1}dr^{2} + d\theta^{2}), \qquad (1.1)$$

где обозначено

$$\rho^{2} = r^{2} + a^{2} \cos^{2} \theta, \quad \Delta = r^{2} - 2Mr + a^{2}, \tag{1.2}$$

$$e^{2\chi} = \frac{\Delta \rho^{2}}{(r^{2} + a^{2})^{2} - \Delta a^{2} \sin^{2} \theta}, \quad e^{2\psi} = \Delta \sin^{2} \theta e^{-2\chi}, \quad \omega = \frac{2Mra}{\Delta \rho^{2}} e^{2\chi}.$$

Здесь M обозначает массу черной дыры. Параметр вращения a связан с угловым моментом посредством соотношения J = Ma. Условие экстремальности черной дыры, которое означает, что внешний и внутренний горизонты совпадают, приводит к ограничению a = M. При этом $\Delta = (r-M)^2$ и горизонт событий расположен на поверхности $r = \tilde{r}_0 = M$.

Для описания геометрии экстремальной черной дыры Керра вблизи горизонта событий представляется естественным применить преобразование:

$$r \to \tilde{r}_0 + \varepsilon r$$
 (1.3)

к метрике (1.1) и затем перейти к пределу $\varepsilon \to 0$. Для того, чтобы получить невырожденную и несингулярную метрику, в работе [9] было предложено дополнить (1.3) преобразованиями временной и азимутальной угловой переменных t и φ :

$$r \to \tilde{r}_0 + \varepsilon r, \quad t \to \frac{t}{\varepsilon}, \quad \varphi \to \varphi + \frac{t}{2M\varepsilon}.$$
 (1.4)

После перехода к пределу $\varepsilon \to 0$ имеем:

$$ds^{2} = \left(\frac{1+\cos^{2}\theta}{2}\right) \left[-\frac{r^{2}}{r_{0}^{2}}dt^{2} + \frac{r_{0}^{2}}{r^{2}}dr^{2} + r_{0}^{2}d\theta^{2}\right] + \frac{2r_{0}^{2}\sin^{2}\theta}{1+\cos^{2}\theta} \left(d\varphi + \frac{r}{r_{0}^{2}}dt\right)^{2}, \quad (1.5)$$

где было введено обозначение $r_0^2 = 2M^2$. Прямыми вычислениями можно убедиться, что метрика (1.5) доставляет решение вакуумным уравнениям Эйнштейна.

Решение (1.5) обладает рядом интересных особенностей. Пространство не является асимптотически плоским. При $\theta = 0$ и $t = \pi$ метрика сводится к метрике двумерного пространства анти-де Ситтера. Метрика обладает дополнительными симметриями: к трансляциям времени t и азимутального угла φ , являющихся симметриями исходной метрики Керра (1.1), добавляется дилатация

$$t' = t + \gamma t, \qquad r' = r - \gamma r, \tag{1.6}$$

и специальное конформное преобразование

$$t' = t + \frac{1}{2}(t^2 + \frac{r_0^4}{r^2})\sigma, \qquad r' = r - tr\sigma, \qquad \phi' = \phi - \frac{r_0^2}{r}\sigma.$$
 (1.7)

По аналогии с двумерным пространством анти де Ситтера несложно ввести глобальные координаты, в которых метрика принимает вид

$$ds^{2} = \left(\frac{1+\cos^{2}\theta}{2}\right) \left[-(1+y^{2})d\tau^{2} + \frac{dy^{2}}{1+y^{2}} + d\theta^{2}\right] + \frac{2\sin^{2}\theta}{1+\cos^{2}\theta}(d\phi + yd\tau)^{2} \quad (1.8)$$

и убедиться, что пространство является геодезически полным.

Полезно напомнить, что исходная геометрия Керра обладает скрытой симметрией, которая описывается тензором Киллинга второго ранга:

$$K_{\mu\nu} = Q_{\mu\nu} - r^2 g_{\mu\nu}, \qquad (1.9)$$

где:

$$Q_{\mu\nu} = \begin{pmatrix} -\Delta & 0 & 0 & a\Delta\sin^{2}\theta \\ 0 & \frac{\rho^{4}}{\Delta} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ a\Delta\sin^{2}\theta & 0 & 0 & -a^{2}\Delta\sin^{4}\theta \end{pmatrix}$$

Как хорошо известно, каждому вектору Киллинга ξ^{μ} отвечает интеграл движения $\xi^{\mu} \dot{x}^{\nu} g_{\mu\nu}$ уравнений геодезических. Аналогично, тензору Киллинга $K_{\mu\nu}$ соответствует интеграл движения, квадратичный по скоростям $K_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}$. В частности, наличие такого квадратичного интеграла позволило Картеру проинтегрировать уравнения движения массивной частицы в поле черной дыры Керра в квадратурах [72]. Отметим, что тензора Киллинга также позволяет разделить переменные в уравнениях Дирака и Клейна–Гордона на фоне метрики Керра [73]. Стоит заметить также, что в моделях суперчастиц в искривленном пространстве, допускающем тензоры Киллинга, могут быть построены дополнительные суперзаряды [74], скобки Пуассона которых дают тензоры Киллинга [75].

Применение преобразований (1.4) к тензору Киллинга (1.9) и последующий предел $\varepsilon \to 0$ приводят к следующему выражению:

$$K_{\mu\nu}dx^{\mu}dx^{\nu} = \left(\frac{1+\cos^2\theta}{2}\right)\left[-\frac{r^2}{r_0^2}dt^2 + \frac{r_0^2}{r^2}dr^2\right].$$
 (1.10)

С точностью до конформного множителя тензор Киллинга (1.10) совпадает с AdS_2 -метрикой в координатах Пуанкаре. Как было установлено в работе [59], вблизи горизонта событий тензор Киллинга является приводимым (в терминологии [76]), покольку его можно построить из векторов Киллинга, отвечающих группе изометрий $SO(2,1) \times U(1)$.

1.2 Метрика Керра–Ньюмана–АдС вблизи горизонта событий

Решением Керра–Ньюмана–АдС называется частное решение уравнений Эйнштейна– Максвелла с космологической постоянной [77]. Метрика и векторный потенциал имеют вид:

$$ds^{2} = \frac{\Delta_{r}}{\rho^{2}} \left(dt - \frac{a}{\Xi} \sin^{2} \theta d\varphi \right)^{2} - \frac{\rho^{2}}{\Delta_{r}} dr^{2} - \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} - \frac{\Delta_{\theta}}{\rho^{2}} \sin^{2} \theta \left(a dt - \frac{r^{2} + a^{2}}{\Xi} d\varphi \right)^{2}, \qquad (1.11)$$
$$A = -\frac{q_{e}r}{\rho^{2}} \left(dt - \frac{a \sin^{2} \theta}{\Xi} d\varphi \right) - \frac{q_{m} \cos \theta}{\rho^{2}} \left(a dt - \frac{r^{2} + a^{2}}{\Xi} d\varphi \right),$$

где обозначено:

$$\Delta_r = (r^2 + a^2) \left(1 + \frac{r^2}{l^2} \right) - 2Mr + q^2, \quad \Delta_\theta = 1 - \frac{a^2}{l^2} \cos^2 \theta,$$

$$\rho^2 = r^2 + a^2 \cos^2 \theta, \quad \Xi = 1 - \frac{a^2}{l^2}, \quad q^2 = q_e^2 + q_m^2.$$
(1.12)

Параметры M, a, q_e, q_m связаны с массой, угловым моментом, электрическим и магнитным зарядами посредством соотношений [78]:

$$M_{ADM} = \frac{M}{\Xi^2}, \ J = \frac{aM}{\Xi^2}, \ Q_{e/m} = \frac{q_{e/m}}{\Xi},$$
 (1.13)

а l связано с космологической постоянной следующим образом: $\Lambda = -3/l^2$. Нули функции Δ_r , которые обозначим за r_+ и r_- , определяют внешний и внутренний горизонты, соответственно.

16

Метрика и электромагнитное поле инвариантны относительно трансляций угловой координаты φ и времени t:

$$\delta t = \tau, \ \delta \varphi = \phi. \tag{1.14}$$

Менее очевидный факт заключается в том, что метрика (1.11) допускает тензор Киллинга второго ранга:

$$K_{ij} = Q_{ij} + r^2 g_{ij}, (1.15)$$

где обозначено:

$$Q_{ij} = \begin{pmatrix} -\Delta_r & 0 & 0 & \frac{a\Delta_r}{\Xi}\sin^2\theta \\ 0 & \frac{\rho^4}{\Delta_r} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{a\Delta_r}{\Xi}\sin^2\theta & 0 & 0 & -\frac{a^2\Delta_r}{\Xi^2}\sin^4\theta \end{pmatrix}.$$

В экстремальном случае внешний и внутренний горизонты совпадают при $r = r_+$. Тогда имеют место равенства:

$$\begin{cases} \Delta_r|_{r=r_+} = 0\\ \Delta'_r|_{r=r_+} = 0, \end{cases}$$

откуда находим условия экстремальности:

$$a^{2} = \frac{r_{+}^{2}(1 - 3r_{+}^{2}/l^{2}) - q^{2}}{1 - r_{+}^{2}/l^{2}}, \ M = \frac{r_{+}((1 + r_{+}^{2}/l^{2})^{2} - q^{2}/l^{2})}{1 - r_{+}^{2}/l^{2}},$$
(1.16)

при этом

$$\Delta_r = (r - r_+^2)^2 ((r + r_+^2)^2 + 2r_+^2 + l^2 + a^2)/l^2.$$
(1.17)

Для перехода к области вблизи горизонта событий используем преобразование координат [78]:

$$r \to r_+ + \varepsilon r_0 r, \quad t \to \frac{tr_0}{\varepsilon}, \quad \varphi \to \frac{tr_0 a\Xi}{\varepsilon (r_+^2 + a^2)},$$
 (1.18)

после чего переходим к пределу $\varepsilon \to 0$. Первое преобразование в (1.18) является естественным для описания геометрии вблизи горизонта событий, второе и третье

нужны для того, чтобы в пределе метрика была несингулярной и невырожденной. Параметр r₀ выбирается из соображений удобства. В итоге получаем:

$$ds^{2} = \Gamma\left(r^{2}dt^{2} - \frac{dr^{2}}{r^{2}} - \alpha d\theta^{2}\right) - \gamma(d\varphi + krdt)^{2}, \ A = f(d\varphi + krdt),$$
(1.19)

где:

$$\Gamma = \frac{\rho_{+}^{2} r_{0}^{2}}{r_{+}^{2} + a^{2}}, \quad \alpha = \frac{r_{+}^{2} + a^{2}}{\Delta_{\theta} r_{0}^{2}}, \quad \gamma = \frac{\Delta_{\theta} (r_{+}^{2} + a^{2})^{2} \sin^{2} \theta}{\rho_{+}^{2} \Xi^{2}},$$

$$\rho_{+}^{2} = r_{+}^{2} + a^{2} \cos^{2} \theta, \quad r_{0}^{2} = \frac{(r_{+}^{2} + a^{2})(1 - r_{+}^{2}/l^{2})}{1 + 6\frac{r_{+}^{2}}{l^{2}} - 3\frac{r_{+}^{4}}{l^{4}} - \frac{q^{2}}{l^{2}}}, \quad k = \frac{2ar_{+} \Xi r_{0}^{2}}{(r_{+}^{2} + a^{2})^{2}}, \quad (1.20)$$

$$f = (r_{+}^{2} + a^{2})\frac{q_{e}(r_{+}^{2} - a^{2}\cos^{2} \theta) + 2q_{m}ar_{+}\cos \theta}{2\rho_{+}^{2} \Xi ar_{+}}.$$

Полевая конфигурация (1.19) является решением уравнений Эйнштейна–Максвелла и сводится к экстремальному решению Керра при $q_e = q_m = 0$ и $l^2 \to \infty$.

Метрика и поле (1.19) обладают расширенной группой симметрий: в дополнение к (1.14) она включает преобразование дилатации

$$\delta t = \lambda t, \quad \delta r = -\lambda r, \tag{1.21}$$

и специальное конформное преобразование

$$\delta t = (t^2 + \frac{1}{r^2})\sigma, \quad \delta r = -2tr\sigma, \quad \delta \varphi = -\frac{2k}{r}\sigma.$$
 (1.22)

Вместе они образуют группу $SO(2,1) \times U(1)$.

Преобразованиям трансляции времени, сдвигу угла φ , дилатации и специальному конформному преобразованию (1.14), (1.21), (1.22) отвечают векторы Киллинга¹

$$H = \partial_t, \ P = \partial_{\varphi}, \ D = t\partial_t - r\partial_r, \ K = (t^2 + \frac{1}{r^2})\partial_t - 2tr\partial_r - \frac{2k}{r}\partial_{\varphi}$$
(1.23)

соответственно. Как легко убедиться, они образуют алгебру $so(2,1) \oplus u(1)$:

$$[H, D] = H, \quad [H, K] = 2D, \quad [D, K] = K.$$
 (1.24)

¹Векторы Киллинга и отвечающие им сохраняющиеся величины (см. ниже), равно как и тензор Киллинга, будем обозначать одними и теми же буквами

Коммутатор P со всеми остальными векторными полями равен нулю.

Применяя преобразование (1.18) к тензору Киллинга (1.15) получаем:

$$L = \Gamma^2 \left(r^2 dt^2 - \frac{dr^2}{r^2} \right).$$
 (1.25)

Второе слагаемое в (1.15) редуцируется к метрике, умноженной на постоянное слагаемое, являющейся тривиальным тензором Киллинга, поэтому ее можно отбросить. Стоит также заметить, что (1.25) с точностью до конформного множителя Γ^2 совпадает с AdS_2 -метрикой в координатах Пуанкаре. Как установлено ниже в Разделе 2.2., тензор Киллинга (1.25) является приводимым.

1.3 Метрика Мелвина–Керра вблизи горизонта событий

Решение Мелвина–Керра описывает вращающуюся черную дыру во внешнем магнитном поле и может быть построена при помощи преобразований Гаррисона. Преобразования Гаррисона действуют на так называемые потенциалы Эрнста \mathcal{E}, Φ , относящиеся к решению Керра:

$$\mathcal{E}' = \Lambda^{-1} \mathcal{E}, \quad \Phi' = \Lambda^{-1} \left(\Phi - \frac{B\mathcal{E}}{2} \right),$$
 (1.26)

где $\Lambda = 1 + B\Phi - 1/4B^2 \mathcal{E}$ и позволяют построить пространство–время с внешним магнитным полем. При этом метрика, записанная в следующей форме:

$$ds^{2} = f^{-1} \left(\rho^{2} dt^{2} - 2P^{-2} d\zeta d\zeta^{*} \right) - f (d\varphi - \omega dt)^{2}, \qquad (1.27)$$

преобразуется по следующему закону [16]:

$$f' = |\Lambda|^2 f,$$

$$\nabla \omega' = |\Lambda|^2 \nabla \omega + \rho f^{-1} (\Lambda^* \nabla \Lambda - \Lambda \nabla \Lambda^*).$$
(1.28)

Звездочка в этих формулах обозначает комплексное сопряжение, а ∇ – оператор градиента, построенный по метрике $d\zeta d\zeta^*$.

Для метрики Керра (1.1) данные преобразования приводят к метрике Мелвина– Керра [17]:

$$ds^{2} = \Sigma |\Lambda|^{2} \left(-\frac{\Delta}{A} dt^{2} + \frac{dr^{2}}{\Delta} + d\theta^{2} \right) + \frac{\Xi \sin^{2} \theta}{\Sigma} (d\varphi - w dt)^{2}.$$
(1.29)

Здесь были введены следующие обозначения:

$$\Xi = (r^{2} + a^{2})^{2} - \Delta a^{2} \sin^{2} \theta, \quad \Sigma = r^{2} + a^{2} \cos^{2} \theta,$$

$$\Delta = r^{2} + a^{2} - 2Mr,$$
(1.30)

а также:

$$\operatorname{Re} \Lambda = 1 + \frac{B^2}{4} \left((r^2 + a^2) \sin^2 \theta + \frac{2a^2 M r \sin^4 \theta}{\Sigma} \right),$$
$$\operatorname{Im} \Lambda = -\frac{B^2 \cos \theta}{4} \left(2aM(2 + \sin^2 \theta) + \frac{2a^3 M \sin^4 \theta}{\Sigma} \right), \qquad (1.31)$$
$$w = \frac{16Mra + w_B(r, \theta)B^4}{6\Xi},$$

где

$$w_B(r,\theta) = -aM(r^3 + (2M - 3r)a^2)\Delta\cos^4\theta + 6Mra(2a^2r^2 + r^4 + a^4 - 2Mr^3)\cos^2\theta.$$

Эта метрика доставляет решение уравнениям Эйнштейна–Максвелла, совместно со следующим электромагнитным полем:

$$A = (\Phi_0 - w\Phi_3)dt + \Phi_3 d\varphi, \qquad (1.32)$$

где компоненты Φ_0 и Φ_3 равны:

$$\Phi_{0} = -\frac{a}{8\Xi} \left(4a^{4}M^{2} + 2a^{4}Mr - 24a^{2}M^{3}r - 24a^{2}M^{2}r^{2} - 4a^{2}Mr^{3} - 12M^{2}r^{4} - 6Mr^{5} - \Delta \left(12Mr(r^{2} + a^{2})\cos^{2}\theta + (2Mr^{3} + a^{2}(4M^{2} - 6Mr))\cos^{4}\theta \right) \right), \qquad (1.33)$$

$$\Phi_{3} = \frac{1}{8\Sigma\Xi} \left[4\Xi B\sin^{2}\theta + B^{4} \left(\Sigma (r^{2} + a^{2})^{2}\sin^{4}\theta + 4a^{2}Mr(r^{2} + a^{2})\sin^{6}\theta + 4a^{2}M^{2} \left(r^{2}(2 + \sin^{2}\theta)\cos^{2}\theta + a^{2}(1 + \cos^{2}\theta)^{2} \right) \right) \right].$$

Переход от представленной выше геометрии к геометрии, описывающей область вблизи горизонта событий, осуществляется посредством следующего преобразования:

$$t \to \frac{2M^2}{\varepsilon}t, \quad r \to M + \varepsilon r, \quad \varphi \to \varphi + \frac{(1 + 2B^4M^4)M}{(1 + B^4M^4)\varepsilon}t,$$
 (1.34)

после которого вычисляется предел $\varepsilon \to 0$. Применение этих преобразваний дает следующую метрику, которая также является решением уравнений Эйнштейна– Максвелла:

$$ds^{2} = \Gamma(\theta) \left(-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + d\theta^{2} + \gamma(\theta)(d\phi + krdt)^{2} \right), \qquad (1.35)$$

где обозначено:

$$\Gamma(\theta) = M^2(\sigma^2 + \tau^2 \cos^2 \theta), \quad \gamma(\theta) = \frac{4\sin^2 \theta}{(\sigma^2 + \tau^2 \cos^2 \theta)^2}, \quad k = -\sigma\tau.$$
(1.36)

Постоянные σ и τ связаны с массой M и магнитным зарядом B черной дыры Мелвина–Керра следующим образом:

$$\sigma = 1 + B^2 M^2, \quad \tau = 1 - B^2 M^2. \tag{1.37}$$

Потенциал магнитного поля А принимает вид:

$$A = f(\theta)(krdt + d\phi), \quad f(\theta) = \frac{2C_1\sigma\tau\cos\theta + C_2(\tau^2\cos^2\theta - \sigma^2)}{\sigma^2 + \tau^2\cos^2\theta}, \quad (1.38)$$

где произвольные постоянные C_1, C_2 удовлетворяют уравнению окружности:

$$C_1^2 + C_2^2 = \frac{M^2(\tau^2 - \sigma^2)}{\sigma^2 \tau^2}.$$
(1.39)

У фоновой геометрии вблизи горизонта (3.49) появляются дополнительные изометрии, описываемые векторными полями Киллинга:

$$H = \partial_t, \quad D = t\partial_t - r\partial_r, \quad K = (t^2 + r^{-2})\partial_t - 2tr\partial_r - \frac{2k}{r}\partial_\phi \tag{1.40}$$

которые образуют алгебру so(2,1). Еще одна дополнительная изометрия связана с трансляциями азимутального угла: $P = \partial_{\varphi}$.

1.4 Метрика Майерса–Перри общего вида

Метрика Майерса–Перри является обобщением метрики Керра на случай произвольного числа пространственных измерений. Она является решением вакуумных уравнений Эйнштейна в D измерениях и описывает черную дыру, вращающуюся в $(n - \epsilon_D)$ двумерных плоскостях, где $\epsilon_D = 0$ для нечетного числа измерений (D = 2n + 1) и $\epsilon_D = 1$ для четного числа измерений (D = 2n). В координатах Бойера–Линдквиста имеем [79]:

$$ds^{2} = dt^{2} - \frac{U}{\Delta}dr^{2} - \frac{2M}{U}\left(dt - \sum_{i=1}^{n-\epsilon_{D}}a_{i}d\mu_{i}^{2}d\varphi_{i}\right)^{2} - \sum_{i=1}^{n}(r^{2} + a_{i}^{2})d\mu_{i}^{2} - \sum_{i=1}^{n-\epsilon_{D}}(r^{2} + a_{i}^{2})\mu_{i}^{2}d\varphi_{i}^{2},$$

$$(1.41)$$

где *М* – масса черной дыры, a_i – параметры вращения,

$$\Delta = r^{\epsilon_D - 2} \prod_{i=1}^{n-\epsilon_D} (r^2 + a_i^2) - 2M, \quad U = r^{\epsilon_D} \sum_{i=1}^n \frac{\mu_i^2}{r^2 + a_i^2} \prod_{j=1}^{n-\epsilon_D} (r^2 + a_j^2), \tag{1.42}$$

 φ_i – азимутальные углы и μ_i параметризуют сферу:

$$\sum_{i=1}^{n} \mu_i^2 = 1. \tag{1.43}$$

В четномерном случае, когда плоскостей врашения на одну меньше, *n*-ый параметр вращения принимается равным нулю:

$$a_n = 0.$$

Так как метрика имеет блочно-диагональный вид по μ_i и $t, r\varphi_i$, при построении обратной метрики каждый из этих секторов можно обратить по отдельности. Далее нас будет интересовать, в основном, случай равных параметров вращения:

$$a_i = a$$
 $i = 1, \dots, n - \epsilon_D,$

поскольку в этом случае функция U не зависит от углов и возможно полное разделение переменных в уравнении Гамильтона-Якоби (см. [79]). Наложение этого условия существенно упрощает вид метрики (1.64). Так как рассмотрение четнои нечетномерных случаев различается, явные формулы представлены ниже в соответствующих разделах.

Нам также понадобится явное выражение для обратной метрики [79]:

$$g^{\mu\nu} = \left(Q + \frac{(2M)^2}{U\Delta}\right)\partial_t^2 - \frac{\Delta}{U}\partial_r^2 + + \sum_{i=1}^{n-\epsilon_D} \left(\frac{(2M)^2}{U\Delta}\frac{1}{r^2 + a^2} + \frac{2M}{U}\frac{a}{r^2 + a^2}\right)\partial_t\partial_{\varphi_i} - - \sum_{i,j=1}^{n-\epsilon_D} \left(\frac{1}{r^2 + a^2}\frac{\delta^{ij}}{\mu_i^2} + \frac{(2M)^2}{U\Delta}\frac{a^2}{(r^2 + a^2)^2} - R\right)\partial_{\varphi_i}\partial_{\varphi_j} + \dots$$
(1.44)

Здесь многоточие обозначает сектор μ_i , который нужно обращать отдельно для D = 2n и D = 2n + 1 (см. Разделы 2.4 и 2.5). Q и R определены следующим образом:

$$Q = 1 + \frac{2M}{U},$$

$$R = \frac{2M}{U} \frac{a}{(r^2 + a^2)^2} + \frac{(2M)^2}{U\Delta} \frac{2a^2}{(r^2 + a^2)^2}.$$
(1.45)

1.5 Метрика экстремальной черной дыры Майерса– Перри вблизи горизонта событий

В силу ряда особенностей изучение метрики Майерса–Перри удобнее проводить не в общем виде, а по отдельности для случаев нечетного (D = 2n + 1) и четного (D = 2n) числа измерений. Соответственно, геометрию вблизи горизонта событий будем описывать в двух подразделах, отвечающих случаям D = 2n + 1и D = 2n.

1.5.1 Случай D = 2n + 1 измерений

Для нечетного числа измерений и равных параметров вращения функци
и Δ иU принимают вид

$$\Delta = \frac{(r^2 + a^2)^n}{r^2} - 2M, \quad U = (r^2 + a^2)^{n-1}.$$
(1.46)

Метрика (1.41) записывается в форме:

$$ds^{2} = dt^{2} - \frac{U}{\Delta}dr^{2} - \frac{2M}{U}\left(dt - \sum_{i=1}^{n} (a_{i}d\mu_{i}^{2}d\varphi_{i})\right)^{2} - \sum_{i=1}^{n} (r^{2} + a_{i}^{2})(d\mu_{i}^{2} + \mu_{i}^{2}d\varphi_{i}^{2}) \quad (1.47)$$

В экстремальном случае, когда имеется один горизонт, функция Δ должна иметь нуль второго порядка на горизонте:

$$\Delta(r_0) = \Delta'(r_0) = 0, \tag{1.48}$$

где штрих обозначает производную по *r*. Это условие позволяет зафиксировать массу *M* и параметр вращения *a* через радиус горизонта событий *r*₀:

$$a^{2} = (n-1)r_{0}^{2}, \quad M = \frac{(nr_{0}^{2})^{n}}{2r_{0}^{2}}.$$
 (1.49)

После некоторых преобразований можно привести метрику (1.47) к виду, удобному для перехода к пределу вблизи горизонта событий:

$$ds^{2} = \frac{\Delta}{U} \left(dt - a \sum_{i=1}^{n} \mu_{i}^{2} d\varphi_{i} \right)^{2} - \frac{U}{\Delta} dr^{2} - \frac{1}{r^{2}} \sum_{i=1}^{n} \mu_{i}^{2} (adt - (r^{2} + a^{2}) d\varphi_{i})^{2} - (r^{2} + a^{2}) \sum_{i=1}^{2} d\mu_{i}^{2} + \frac{a^{2} (r^{2} + a^{2})}{r^{2}} \sum_{i < j} \mu_{i}^{2} \mu_{j}^{2} (d\varphi_{i} - d\varphi_{j})^{2}.$$
(1.50)

Для того, чтобы перейти к горизонту событий, сделаем преобразование радиальной координаты

$$r \to r_0 + \varepsilon r_0 r,$$
 (1.51)

где $\varepsilon \to 0$. Однако, применив такой предел к (1.50), мы получим сингулярное выражение, поэтому его нужно дополнить преобразованиями для времени и углов:

$$t \to \frac{\alpha t}{\varepsilon}, \quad \varphi_i \to \varphi_i + \frac{\beta_i t}{\varepsilon}$$
 (1.52)

и зафиксировать коэффициенты α и β_i так, чтобы метрика была несингулярной, а первые два слагаемых давали бы AdS_2 -метрику с точностью до множителя. Из этих условий находим:

$$t \to \frac{r_0}{2} \frac{n}{n-1} \frac{t}{\varepsilon}, \quad \varphi_i \to \varphi_i + \frac{r_0}{2a} \frac{t}{\varepsilon}.$$
 (1.53)

Применив указанные преобразования к (1.50), получаем искомую метрику вблизи горизонта событий² [66]:

$$ds^{2} = r^{2}dt^{2} - \frac{dr^{2}}{r^{2}} - 2n(n-1)\sum_{i=1}^{n} d\mu_{i}^{2} - 2\sum_{i=1}^{n} \mu_{i}^{2}(rdt + d\varphi_{i})^{2} + \frac{2(n-1)}{n}\sum_{i
(1.54)$$

1.5.2 Случай D = 2n измерений

В четномерном случае метрика (1.41) имеет вид:

$$ds^{2} = dt^{2} - \frac{U}{\Delta} - \frac{2M}{U} \left(dt - \sum_{i=1}^{n-1} a\mu_{i}^{2} d\varphi_{i} \right)^{2} - (r^{2} + a^{2}) \sum_{i=1}^{n} d\mu_{i}^{2} - (r^{2} + a^{2}) \sum_{i=1}^{n-1} \mu_{i}^{2} d\varphi_{i}^{2}, \qquad (1.55)$$

где функции Δ и U даются выражениями:

$$\Delta = \frac{1}{r}(r^2 + a^2)^{n-1} - 2M, \quad U = \frac{1}{r}(r^2 + a^2)^{n-2}(r^2 + a^2\mu_n^2), \tag{1.56}$$

а $\mu_n^2 = 1 - \sum_{i=1}^{n-1} \mu_i^2$. Метрику можно тождественно переписать в виде³: $ds^2 = \frac{\Delta}{U} \left(dt - a \sum \mu_i^2 d\varphi_i \right)^2 - \frac{U}{\Delta} dr^2 - \sum (r^2 + a^2) d\mu_i^2 - r^2 d\mu_n^2 - \frac{(r^2 + a^2)^{n-2}}{Ur} \sum \mu_i^2 (adt - (r^2 + a^2) d\varphi_i)^2 + \frac{a^2 (r^2 + a^2)^{n-1}}{Ur} \sum_{i < j} \mu_i^2 \mu_j^2 (d\varphi_i - d\varphi_j)^2.$ (1.57)

Налагая условие экстремальности

$$\Delta(r_0) = \Delta'(r_0) = 0, \tag{1.58}$$

выражаем массу М и параметр вращения а через радиус горизонта событий r₀:

$$a^{2} = (2n-3)r_{0}^{2}, \quad M = \frac{1}{2r_{0}}(2(n-1)r_{0}^{2})^{n-1}.$$
 (1.59)

²Здесь мы отбросили постоянный множитель $\frac{r_0^2}{2(n-1)}$. ³Суммирование подразумевается от 1 до n-1. Как и прежде, чтобы перейти к горизонту событий совершим преобразования координат следующего вида:

$$r \to r_0 + \varepsilon r_0 r, \quad t \to \frac{\alpha t}{\varepsilon}, \quad \varphi_i \to \varphi_i + \frac{\beta_i t}{\varepsilon},$$
 (1.60)

после чего фиксируем коэффициенты так, чтобы метрика после перехода к пределу была несингулярной и вовлекала вклад, пропорциональный AdS_2 -метрике:

$$\alpha = \frac{2(n-1)r_0}{2n-3}, \quad \beta_i = \frac{r_0}{a}.$$
 (1.61)

После перехода к пределу имеем [66]:

$$ds^{2} = \rho_{0}^{2} \left(r^{2} dt^{2} - \frac{dr^{2}}{r^{2}} \right) - \left(2(n-1) \sum d\mu_{i}^{2} + d\mu_{n}^{2} \right) + \frac{2}{(n-1)(2n-3)\rho_{0}^{2}} \sum_{i < j} \mu_{i}^{2} \mu_{j}^{2} \left(\frac{a(n-1)}{r_{0}} (d\varphi_{i} - d\varphi_{j}) \right)^{2} - (1.62) - \frac{4}{(2n-3)^{2}\rho_{0}^{2}} \sum \mu_{i}^{2} \left(rdt + \frac{a(n-1)}{r_{0}} d\varphi_{i} \right)^{2}$$

где мы отбросили постоянный множитель r_0^2 и обозначили

$$\rho_0^2 = \frac{1 + (2n - 3)\mu_n^2}{2n - 3}.$$
(1.63)

1.6 Метрика Майерса–Перри–АдС общего вида

Метрика Майерса–Перри–АдС представляет собой решение уравнений Эйнштейна в D измерениях с космологической постоянной λ [80] и описывает черную дыру, вращающуюся в $(n - \epsilon_D)$ двумерных плоскостях, где $\epsilon_D = 0$ для нечетного числа измерений (D = 2n+1) и $\epsilon_D = 1$ для четного числа (D = 2n). В координатах Бойера–Линдквиста имеем [81]:

$$ds^{2} = W(1 - \lambda r^{2})dt^{2} - \frac{U}{\Delta}dr^{2} - \frac{2M}{U}\left(dt - \sum_{i=1}^{n-\epsilon_{D}}\frac{a_{i}d\mu_{i}^{2}d\varphi_{i}}{1 + \lambda a_{i}^{2}}\right)^{2} - \sum_{i=1}^{n-\epsilon_{D}}\frac{r^{2} + a_{i}^{2}}{1 + \lambda a_{i}^{2}}\mu_{i}^{2}(d\varphi_{i} - \lambda a_{i}dt)^{2} - \sum_{i=1}^{n}\frac{r^{2} + a_{i}^{2}}{1 + \lambda a_{i}^{2}}d\mu_{i}^{2} - \frac{\lambda}{W(1 - \lambda r^{2})}\left(\sum_{i=1}^{n}\frac{r^{2} + a_{i}^{2}}{1 + \lambda a_{i}^{2}}\mu_{i}d\mu_{i}\right),$$
(1.64)

где M – масса черной дыры, a_i – параметры вращения,

$$\Delta = r^{\epsilon_D - 2} (1 - \lambda r^2) \prod_{i=1}^{n - \epsilon_D} (r^2 + a_i^2), \quad U = r^{\epsilon_D} \sum_{i=1}^n \frac{\mu_i^2}{r^2 + a_i^2} \prod_{j=1}^{n - \epsilon_D} (r^2 + a_j^2), \quad (1.65)$$

 φ_i – азимутальные углы, и μ_i подчиняются условию:

$$\sum_{i=1}^{n} \mu_i^2 = 1. \tag{1.66}$$

В четномерном случае, когда плоскостей врашения на одну меньше, *n*-параметр вращения принимаем равным нулю:

 $a_n = 0.$

Далее нас будет интересовать только случай равных параметров вращения:

$$a_i = a$$
 $i = 1, \ldots, n - \epsilon_D.$

Нам также понадобится явное выражение для обратной метрики, полученной в [81]:

$$g^{\mu\nu} = \left(Q + \frac{(2M)^2}{U\Delta} \frac{1}{(1-\lambda r^2)^2}\right) \partial_t^2 - \frac{\Delta}{U} \partial_r^2 + \\ + \sum_{i=1}^{n-\epsilon_D} \left(\lambda aQ + \frac{(2M)^2}{U\Delta} \frac{1+\lambda a^2}{(1-\lambda r^2)^2 (r^2+a^2)} + \frac{2Ma}{U(1-\lambda r^2)(r^2+a^2)}\right) \partial_t \partial_{\varphi_i} - (1.67) \\ - \sum_{i,j=1}^{n-\epsilon_D} \left(\frac{1+\lambda a^2}{r^2+a^2} \frac{\delta^{ij}}{\mu_i^2} - \lambda^2 a^2 Q + \frac{(2M)^2 a^2 (1+\lambda a^2)^2}{U\Delta(1-\lambda r^2)^2 (r^2+a^2)^2} - R\right) \partial_{\varphi_i} \partial_{\varphi_j} + \dots$$

В вышеприведенной формуле многоточие обозначает сектор μ_i , который нужно обращать отдельно для D = 2n и D = 2n + 1. Q и R определены следующим образом:

$$Q = \frac{1}{W(1-\lambda r^2)} + \frac{2M}{U} \frac{1}{(1-\lambda r^2)^2},$$

$$R = \frac{(2M)^2}{U\Delta} \frac{2\lambda a^2(1+\lambda a^2)}{(1-\lambda r^2)^2(r^2+a^2)} + \frac{2M}{U} \frac{a}{(r^2+a^2)^2} + \frac{2M}{U} \frac{2\lambda a^2}{(1-\lambda r^2)(r^2+a^2)} + \frac{(2M)^2}{U\Delta} \frac{2a^2(1+\lambda a^2)}{(1-\lambda r^2)(r^2+a^2)^2}.$$
(1.68)

Метрика экстремальной черной дыры Майерса-1.7Перри–АдС вблизи горизонта событий

Аналогично метрике Майерса-Перри, построение геометрии Майерса-Перри-АдС вблизи горизонта событий будем проводить по отдельности для D = 2n + 1и D = 2n в двух нижеследующих подразделах.

Случай D = 2n + 1 измерений 1.7.1

Для нечетного числа измерений метрика (1.64) принимает вид⁴:

$$ds^{2} = W(1 - \lambda r^{2})dt^{2} - \frac{U}{\Delta}dr^{2} - \frac{2M}{U}\left(dt - \frac{a}{1 + \lambda a^{2}}\sum_{i=1}^{n}\mu_{i}^{2}d\varphi_{i}\right)^{2} - \frac{r^{2} + a^{2}}{1 + \lambda a^{2}}\sum_{i=1}^{n}\mu_{i}^{2}(\lambda a dt - d\varphi_{i})^{2} - \frac{r^{2} + a^{2}}{1 + \lambda a^{2}}\sum_{i=1}^{n}d\mu_{i}^{2},$$
(1.69)

где

$$W = \frac{1}{1+\lambda a^2}, \quad U = (r^2 + a^2)^{n-1}, \quad \Delta = \frac{1}{r^2}(1-\lambda r^2)(r^2 + a^2)^n - 2M.$$
(1.70)

Это выражение можно привести к форме:

$$ds^{2} = \frac{\Delta}{U} \left(dt - \frac{a}{1 + \lambda a^{2}} \sum_{i=1}^{n} \mu_{i} d\varphi_{i} \right)^{2} - \frac{U}{\Delta} dr^{2} - \frac{r^{2} + a^{2}}{1 + \lambda a^{2}} \sum_{i=1}^{n} d\mu_{i}^{2} - \frac{1}{r^{2}} \sum_{i=1}^{n} \mu_{i}^{2} \left(a dt - \frac{r^{2} + a^{2}}{1 + \lambda a^{2}} d\varphi_{i} \right)^{2} + \frac{a^{2} (1 - \lambda r^{2}) (r^{2} + a^{2})}{r^{2} (1 + \lambda a^{2})^{2}} \sum_{i < j}^{n} \mu_{i}^{2} \mu_{j}^{2} (d\varphi_{i} - d\varphi_{j})^{2},$$

$$(1.71)$$

которая более удобна для построения метрики вблизи горизонта событий.

В экстремальном случае Δ имеет ноль второго порядка на горизонте, т. е. $^5:$

$$\Delta(r_0) = \Delta'(r_0) = 0.$$
 (1.72)

⁴Дифференцируя связь (1.66), получаем $\sum_{i=1}^{n} \mu_i d\mu_i = 0$. Следовательно, последний вклад в (1.64), пропорциональный $\sum_{i=1}^{n} \mu_i d\mu_i$, при условии, что все a_i равны, обращается в ноль. ⁵Штрих обозначает производную по r.

Решая это уравнение, можно выразить массу и параметр вращения черной дыры через радиус горизонта r_0 и космологическую постоянную:

$$a^{2} = (n(1-\varkappa) - 1)r_{0}^{2}, \quad 2M = \frac{(nr_{0}^{2})^{n}(1-\varkappa)^{n+1}}{r_{0}^{2}}; \quad \varkappa := \lambda r_{0}^{2}.$$
(1.73)

При приближении к горизонту, т. е. когда $r \to r_0 + \varepsilon r_0 r$ и ε стремится к нулю, справдливо следующее соотношение:

$$\Delta \to \varepsilon^2 r_0^2 r^2 V, \quad V := \frac{2(nr_0^2)^{n-1}(1-\varkappa)^{n-1}(n(1-2\varkappa)-1)}{r_0^2}.$$
 (1.74)

Чтобы получить метрику вблизи горизонта, нужно следовать той же процедуре, что и в случае с нулевой космологической постоянной, а именно, произвести следующие координатные преобразования:

$$r \to r_0 + \varepsilon r_0 r, \quad t \to \frac{\alpha t}{\varepsilon}, \quad \varphi_i \to \varphi_i + \frac{\beta_i t}{\varepsilon},$$
 (1.75)

и рассмотреть предел $\varepsilon \to 0$. Константы α и β_i следует выбрать так, чтобы первые два вклада в (1.71) воспроизводили метрику AdS_2 с точностью до постоянного множителя, а все остальное выражение не имело особенностей. Эти два условия достаточны для нахождения α и β_i :

$$\alpha = \frac{r_0^2 + a^2}{2r_0(n(1 - 2\varkappa) - 1)}, \quad \beta_i = \beta = \frac{a(1 + \lambda a^2)}{2r_0(n(1 - 2\varkappa) - 1)}.$$
 (1.76)

Чтобы привести метрику к еще более простой форме, переопределим азимутальные углы:

$$\varphi_i \to \frac{ar_0(1+\lambda a^2)}{(r_0^2+a^2)(n(1-2\varkappa)-1)}\varphi_i.$$
 (1.77)

В итоге, находим экстремальную метрику Майерса–Перри–АдС вблизи горизонта событий:

$$ds^{2} = \frac{r_{0}^{2}}{2(n(1-2\varkappa)-1)} \left(r^{2}dt^{2} - \frac{dr^{2}}{r^{2}}\right) - \frac{r_{0}^{2} + a^{2}}{1+\lambda a^{2}} \sum_{i=1}^{n} d\mu_{i}^{2} - \frac{a^{2}}{(n(1-2\varkappa)-1)^{2}} \sum_{i=1}^{n} \mu_{i}^{2}(rdt + d\varphi_{i})^{2} + \frac{a^{4}}{nr_{0}^{2}(n(1-2\varkappa)-1)^{2}} \sum_{i

$$(1.78)$$$$

Легко проверить, что (1.78) удовлетворяет уравнениям Эйнштейна с космологической постоянной.

1.7.2 Случай D = 2n измерений

Для четного числа измерений метрика (1.64) принимает вид:

$$ds^{2} = W(1 - \lambda r^{2})dt^{2} - \frac{U}{\Delta}dr^{2} - \frac{2M}{U}\left(dt - \frac{a}{1 + \lambda a^{2}}\sum_{i=1}^{n-1}\mu_{i}^{2}d\varphi_{i}\right)^{2} - \frac{r^{2} + a^{2}}{1 + \lambda a^{2}}\sum_{i=1}^{n-1}\mu_{i}^{2}(d\varphi_{i} - \lambda adt)^{2} - \frac{r^{2} + a^{2}}{1 + \lambda a^{2}}\sum_{i=1}^{n-1}d\mu_{i}^{2} - r^{2}d\mu_{n}^{2} - \frac{\lambda}{W(1 - \lambda r^{2})}\left(\frac{a^{2}(1 - \lambda r^{2})}{1 + \lambda a^{2}}\mu_{n}d\mu_{n}\right)^{2},$$
(1.79)

где

$$W = \frac{1 + \lambda a^2 \mu_n^2}{1 + \lambda a^2}, \quad U = \frac{1}{r} (r^2 + a^2 \mu_n^2) (r^2 + a^2)^{n-2},$$

$$\Delta = \frac{1 - \lambda r^2}{r} (r^2 + a^2)^{n-1} - 2M.$$
(1.80)

Чтобы привести ее к более простому виду, введем следующие координаты μ_i [80]:

$$\mu_i = \nu_i \sin \theta \ (i = 1, \dots, n-1), \quad \mu_n = \cos \theta, \quad \sum_{i=1}^{n-1} \nu_i^2 = 1.$$
 (1.81)

После суммирования некоторых слагаемых в (1.79) имеем⁶:

$$ds^{2} = \frac{\Delta}{U} \left(dt - \frac{a}{1+\lambda a^{2}} \sum \mu_{i}^{2} d\varphi_{i} \right)^{2} - \frac{U}{\Delta} dr^{2} - \frac{r^{2}+a^{2}}{1+\lambda a^{2}} \sin^{2}\theta \sum d\nu_{i}^{2} - \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} - \frac{\Delta_{\theta}}{\rho^{2}} \sum \mu_{i}^{2} \left(adt - \frac{r^{2}+a^{2}}{1+\lambda a^{2}} d\varphi_{i} \right)^{2} + \frac{a^{2}(r^{2}+a^{2})(1-\lambda r^{2})}{(1+\lambda a^{2})^{2} \Delta_{\theta}} \sum_{i < j} (d\varphi_{i} - d\varphi_{j})^{2},$$

$$(1.82)$$

где обозначено:

$$\rho = r^2 + a^2 \cos^2 \theta, \quad \Delta_\theta = 1 + \lambda a^2 \cos^2 \theta. \tag{1.83}$$

Налагая условие экстремальности

$$\Delta(r_0) = \Delta'(r_0) = 0, \tag{1.84}$$

можем выразить массу черной дыры и космологическую постоянную через радиус горизонта событий и параметр вращения:

$$\lambda = \frac{(2n-3)r_0^2 - a^2}{r_0^2(a^2 + (2n-1)r_0^2)}, \quad M = \frac{(r0^2 + a^2)^n}{r_0(a^2 + (2n-1)r_0^2)}.$$
(1.85)

⁶Суммирование всюду подразумевается от 1 до n-1.

Вблизи горизонта, т. е. когда $r \to r_0 + \varepsilon r_0 r, \varepsilon \to 0$, справедливо следующее асимптотическое соотношение:

$$\Delta \to \varepsilon^2 r_0^2 r^2 \tilde{V}, \quad \tilde{V} = \frac{(r_0^2 + a^2)^{n-2} (a^4 + 2a^2(2n-1)r_0^2 - (3-8n+4n^2)r_0^4)}{r_0^2 (a^2 + (2n-1)r_0^2)}.$$
 (1.86)

Аналогично нечетномерному случаю, преобразуем координаты:

$$r \to r_0 + \varepsilon r_0 r, \quad t \to \frac{\alpha t}{\varepsilon}, \quad \varphi_i \to \varphi_i + \frac{\beta_i t}{\varepsilon}$$
 (1.87)

и перейдем к пределу $\varepsilon \to 0$. Также потребуем, чтобы первые два слагаемые в (1.82) давали AdS_2 -метрику с точностью до постоянного множителя, а остальные слагаемые не имели особенностей. Отсюда получаем выражения для α и β_i :

$$\alpha = \frac{r_0^2 + a^2}{r_0 V}, \quad \beta_i = \beta = \frac{a(1 + \lambda a^2)}{r_0 V}, \quad V = \frac{\tilde{V}}{(r_0^2 + a^2)^{n-2}}.$$
 (1.88)

Для простоты переопределим азимутальные углы:

$$\varphi_i \to \frac{2ar_0}{V} \frac{1 + \lambda a^2}{r_0^2 + a^2} \varphi_i. \tag{1.89}$$

Это дает метрику Майерса–Перри–АдС вблизи горизонта событий для D = 2n:

$$ds^{2} = \frac{\rho_{0}^{2}}{V} \left(r^{2} dt^{2} - \frac{dr^{2}}{r^{2}} \right) - \frac{r_{0}^{2} + a^{2}}{1 + \lambda a^{2}} \sin^{2} \theta \sum d\nu_{i}^{2} - \frac{\rho_{0}^{2}}{\Delta_{\theta}} d\theta^{2} - \frac{\Delta_{\theta}}{\rho_{0}^{2}} \frac{4a^{2}r_{0}^{2}}{V^{2}} \sum \mu_{i}^{2} (rdt + d\varphi_{i})^{2} + \frac{4a^{4}r_{0}^{2}(1 - \lambda r_{0}^{2})}{\rho_{0}^{2}(r_{0}^{2} + a^{2})V^{2}} \sum_{i < j} \mu_{i}^{2} \mu_{j}^{2} (d\varphi_{i} - d\varphi_{j})^{2}, \quad (1.90)$$

$$\rho_{0}^{2} := r_{0}^{2} + a^{2}\cos^{2} \theta,$$

которая доставляет решение уравнениям Эйнштейна с космологической постоянной.

1.8 Метрика Майерса–Перри при несовпадающих параметрах вращения

Рассмотрим метрику Майерса–Перри при несовпадающих параметрах вращения a_i . Анализ будем производить для D = 2n. Отправным пунктом является метрика (1.41) для D = 2n

$$ds^{2} = dt^{2} - \frac{U}{\Delta}dr^{2} - \frac{2M}{U}\left(dt - \sum_{i=1}^{n-1}a_{i}d\mu_{i}^{2}d\varphi_{i}\right)^{2} - \sum_{i=1}^{n-1}(r^{2} + a_{i}^{2})d\mu_{i}^{2} - r^{2}d\mu_{n}^{2} - \sum_{i=1}^{n-1}(r^{2} + a_{i}^{2})\mu_{i}^{2}d\varphi_{i}^{2},$$
(1.91)

где M – масса черной дыры, a_i – параметры вращений и введено обозначение:

$$\Delta = r^{-1} \prod_{i=1}^{n-1} (r^2 + a_i^2) - 2M, \quad U = r \left(\sum_{i=1}^{n-1} \frac{\mu_i^2}{r^2 + a_i^2} + \frac{\mu_n^2}{r^2} \right) \prod_{j=1}^{n-1} (r^2 + a_j^2), \quad (1.92)$$

 φ_i – азимутальные углы, и μ_i подчиняются условию:

$$\sum_{i=1}^{n} \mu_i^2 = 1. \tag{1.93}$$

Также введем обозначение:

$$F = \frac{U}{\Delta + 2M}.\tag{1.94}$$

Метрику (1.91) перепишем тождественно в следующем виде:

$$ds^{2} = \frac{\Delta}{U} \left(dt - \sum_{i=1}^{n-1} a_{i} \mu_{i}^{2} d\varphi_{i} \right)^{2} - \frac{U}{\Delta} dr^{2} - \sum_{i=1}^{n-1} (r^{2} + a_{i}^{2}) d\mu_{i}^{2} - r^{2} d\mu_{n}^{2} - \frac{1}{F} \sum_{i=1}^{n-1} \frac{\mu_{i}^{2}}{r^{2} + a_{i}^{2}} (a_{i} dt - (r^{2} + a_{i}^{2}) d\varphi_{i})^{2} + \frac{1}{F} \sum_{i

$$(1.95)$$$$

Наложим теперь условие экстремальности $\Delta(r_0) = \Delta'(r_0) = 0$, которое связывает массу черной дыры, параметры вращения и радиус горизонта событий. Уравнение $\Delta(r_0) = 0$ дает:

$$2M = \frac{\prod_{i=1}^{n-1} (r_0^2 + a_i^2)}{r_0},$$
(1.96)

а равенство $\Delta'(r_0) = 0$ накладывает ограничение на вид функции Δ :

$$\Delta(r) = V(r - r_0)^2 + \dots, \qquad (1.97)$$

где V – постоянная.

Перейдем к новой системе координат, вращающейся вместе с горизонтом событий, для чего совершим координатные преобразования:

$$r \to r_0 + \varepsilon r_0 r, \quad t \to \frac{\alpha t}{\varepsilon}, \quad \varphi_i \to \varphi_i + \frac{\beta_i t}{\varepsilon},$$
 (1.98)

где параметры α и β_i подлежат определению. Исходя из требования несингулярности предела $\varepsilon \to 0$, находим:

$$\alpha = \frac{\prod_{i=1}^{n-1} (r_0^2 + a_i^2)}{r_0^2 V} = \frac{2M}{r_0 V},$$

$$\beta_i = \frac{\alpha a_i}{r_0^2 + a_i^2}.$$
(1.99)

Кроме того, после перехода к пределу $\varepsilon \to 0$, переопределим углы φ_i :

$$\varphi_i \to \frac{2r_0^2 \beta_i}{r_0^2 + a_i^2} \varphi_i = \frac{2r_0^2 \alpha a_i}{(r_0^2 + a_i^2)^2} \varphi_i.$$
(1.100)

В совокупности, преобразования (1.98), (1.100) и предел $\varepsilon \to 0$ дают следующее выражение для метрики вблизи горизонта:

$$ds^{2} = \frac{U(r_{0})}{V} \left(r^{2} dt^{2} - \frac{dr^{2}}{r^{2}} \right) - \sum_{i=1}^{n-1} (r_{0}^{2} + a_{i}^{2}) d\mu_{i}^{2} - r_{0}^{2} d\mu_{n}^{2} - \frac{1}{F(r_{0})} \sum_{i=1}^{n-1} n - 1 \frac{(2r_{0}^{2}\beta_{i})^{2}}{r_{0}^{2} + a_{i}^{2}} \mu_{i}^{2} (rdt + d\varphi_{i})^{2} + \frac{1}{F(r_{0})} \sum_{i

$$(1.101)$$$$

Укажем теперь обратную метрику, необходимую для построения модели частицы [79]:

$$g^{\mu\nu}\partial_{\mu}\partial_{\nu} = \left(1 + \frac{2M}{U} + \frac{(2M)^{2}}{U\Delta}\right)\partial_{t}^{2} - \frac{\Delta}{U}\partial_{r}^{2} + 2\sum_{i=1}^{n-1}\left(\frac{(2M)^{2}}{U\Delta} + \frac{2M}{U}\right)\frac{a_{i}}{r^{2} + a_{i}^{2}} - \sum_{i,j=1}^{n-1}\left(\frac{\delta^{ij}}{(r^{2} + a_{i}^{2})\mu_{i}^{2}} - \left(\frac{2M}{U} + \frac{(2M)^{2}}{U\Delta}\right)\frac{a_{i}a_{j}}{(r^{2} + a_{i}^{2})(r^{2} + a_{j}^{2})}\right)\partial_{\varphi_{i}}\partial_{\varphi_{j}} - \sum_{i,j=1}^{n-1}\chi^{ij}\partial_{\mu_{i}}\partial_{\mu_{j}}.$$
(1.102)

В этой формуле за χ^{ij} обозначено выражение для обратного углового сектора метрики (1.101).

Рассмотрим теперь вопрос о нахождении обратного "сферического" углового сектора метрики Майерса–Перри вблизи горизонта событий при произвольных параметрах вращения. Сам сферический сектор (см. (1.101)) имеет метрику вида:

$$d\sigma^{2} = \sum_{i=1}^{n-1} (r_{0}^{2} + a_{i}^{2}) d\mu_{i}^{2} + r_{0}^{2} d\mu_{n}^{2} = \sum_{i,j=1}^{n-1} \underbrace{\left((r_{0}^{2} + a_{i}^{2}) \delta^{ij} + r_{0}^{2} \frac{\mu_{i} \mu_{j}}{\mu_{n}^{2}} \right)}_{A_{ij}} d\mu_{i} d\mu_{j}.$$
(1.103)

Тогда для нахождения
7 $\chi^{ij}\equiv B_{ij}$ необходимо разрешить матричное уравнение вида:

$$A_{ij}B_{jk} = \delta_{ik} \tag{1.104}$$

Для нахождения B_{ij} выбираем подстановку вида:

$$B_{ij} = \frac{\delta_{ij}}{r_0^2 + a_i^2} + \beta_{ij}\mu_i\mu_j.$$
(1.105)

Из уравнения (1.104) в таком случае следует:

$$\frac{r_0^2}{r_0^2 + a_k^2} + (r_0^2 + a_i^2)\beta_{ik}\mu_n^2 + r_0^2\frac{\mu_i\mu_k}{\mu_n^2}\sum_{j=1}^{n-1}\beta_{jk}\mu_j\mu_j = 0.$$
(1.106)

Можно убедиться, что уравнение (1.106) разрешается при

$$\beta_{ij} = -\frac{1}{\sum_{k=1}^{n-1} \frac{\mu_k^2}{r_0^2 + a_k^2} + \frac{\mu_n^2}{r_0^2}} \cdot \frac{1}{(r_0^2 + a_i^2)(r_0^2 + a_j^2)},$$
(1.107)

и, следовательно, обратная метрика "сферического" сектора $\chi^{ij}(\mu)$ дается выражением:

$$\chi^{ij}(\mu) = \frac{\delta_{ij}}{r_0^2 + a_i^2} - \frac{1}{\sum_{k=1}^{n-1} \frac{\mu_k^2}{r_0^2 + a_k^2} + \frac{\mu_n^2}{r_0^2}} \cdot \frac{\mu_i \mu_j}{(r_0^2 + a_i^2)(r_0^2 + a_j^2)}.$$
 (1.108)

⁷Здесь не идет разделения на верхние и нижние индексы и подразумевается суммирование по повторяющимся латинским индексам.

Обращая преобразования (1.98), находим законы преобразования векторов ∂_t, ∂_r и ∂_{φ_i} :

$$\partial_t \to \frac{\varepsilon}{\alpha} \partial_t - \sum_{i=1}^{n-1} \frac{\beta_i}{\alpha} \partial_{\varphi_i}, \quad \partial_r \to \frac{1}{\varepsilon r_0} \partial_r, \quad \partial_{\varphi_i} \to \partial_{\varphi_i}.$$
 (1.109)

Подставляя выражения (1.109) в обратную метрику и рассматривая предел $\varepsilon \to 0$, получаем выражение для обратной метрики Майерса–Перри при произвольных параметрах вращения вблизи горизонта:

$$g^{\mu\nu}\partial_{\mu}\partial_{\nu} = \frac{V}{U(r_{0})} \left(\frac{1}{r^{2}}\partial_{t}^{2} - r^{2}\partial_{r}^{2} - \frac{2}{r}\sum_{i=1}^{n-1} \frac{2\alpha r_{0}^{2}a_{i}}{(r_{0}^{2} + a_{i}^{2})^{2}}\partial_{t}\partial_{\varphi_{i}} \right) - \sum_{i,j=1}^{n-1} \left(\frac{\delta^{ij}}{r_{0}^{2} + a_{i}^{2}} \frac{1}{\mu_{i}^{2}} - \frac{a_{i}a_{j}}{(r_{0}^{2} + a_{i}^{2})(r_{0}^{2} + a_{j}^{2})} - \frac{V}{U(r_{0})} \frac{4\alpha^{2}r_{0}^{4}a_{i}a_{j}}{(r_{0}^{2} + a_{i}^{2})^{2}(r_{0}^{2} + a_{j}^{2})^{2}} \right) \partial_{\varphi_{i}}\partial_{\varphi_{j}} - \sum_{i,j=1}^{n-1} \chi^{ij}(\mu)\partial_{\mu_{i}}\partial_{\mu_{j}}.$$

$$(1.110)$$

Обратим теперь преобразование (1.100) и применим его к (1.110). Вводя обозначения:

$$\sigma^{i} = \frac{(r_{0}^{2} + a_{i}^{2})^{3}}{4r_{0}^{4}\alpha^{2}a_{i}^{2}}, \quad \tau^{ij} = \frac{(r_{0}^{2} + a_{i}^{2})(r_{0}^{2} + a_{j}^{2})}{4r_{0}^{4}\alpha^{2}}, \quad (1.111)$$

$$\chi^{ij}(\mu) = \frac{V}{U(r_0)} \tilde{\chi}^{ij}(\mu), \qquad (1.112)$$

окончательно получаем обратную метрику вблизи горизонта $g_{\mu\nu}$ в следующем виде:

$$\frac{U(r_0)}{V}g_{\mu\nu}\partial_{\mu}\partial_{\nu} = \frac{1}{r^2}\partial_t^2 - r^2\partial_r^2 - \frac{2}{r}\sum_{i=1}^{n-1}\partial_t\partial_{\varphi_i} - \\
- \sum_{i,j=1}^{n-1} \left(\frac{U(r_0)}{V}\sigma^i\frac{\delta^{ij}}{\mu_i^2} - \frac{U(r_0)}{V}\tau^{ij} - 1\right)\partial_{\varphi_i}\partial_{\varphi_j} - \\
- \sum_{i,j=1}^{n-1} \tilde{\chi}^{ij}(\mu)\partial_{\mu_i}\partial_{\mu_j}.$$
(1.113)

1.9 Геометрия экстремальных черных дыр вблизи горизонта и конформные инварианты

В данном разделе мы используем инварианты группы SO(2,1)

$$r^{2}dt^{2} - \frac{dr^{2}}{r^{2}}, \qquad rdt + d\phi_{i}, \qquad d\phi_{i} - d\phi_{j}, \qquad (1.114)$$

для построения новых решений вакуумных уравнений Эйнштейна в пяти измерениях, которые можно трактовать как описывающие черную дыру Майерса– Перри–НУТ вблизи горизонта событий [82].

1.9.1 Метрика Керра–НУТ вблизи горизонта событий и конформные инварианты

Принимая во внимание конформные инварианты (1.114), наиболее общая форма SO(2,1)-инвариантной метрики в D = 4 имеет вид⁸:

$$ds^{2} = a(\theta) \left(r^{2} dt^{2} - \frac{dr^{2}}{r^{2}} - d\theta^{2} \right) - b(\theta) (rdt + d\varphi)^{2}.$$
(1.115)

Уравнения Эйнштейна в вакууме дают набор дифференциальных уравнений на коэффициентные функции $a(\theta)$ и $b(\theta)$. Детальное изучение показывает, что их можно свести к нелинейному уравнению третьего порядка на $a(\theta)$:

$$4a^{2} + 2a''(a - a') + 3a'(a' + a^{(3)}) = 0, \qquad (1.116)$$

в то время, как $b(\theta)$ выражается через $a(\theta)$:

$$b = \frac{4}{3}(a + a'') - \frac{(a')^2}{a}.$$
(1.117)

Поскольку (1.116) является обыкновенным дифференциальным уравнением третьего порядка, его общее решение должно содержать три произвольные постоянные интегрирования, отвечающие физическим параметрам, характеризующим геометрию вблизи горизонта. Как будет показано ниже, одну постоянную

⁸Необходимо отметить, что возможно написать еще одно слагаемое типа $c(\theta)(rdt + d\varphi)d\theta$, однако от него всегда можно избавиться переопределением переменных θ и φ .

можно убрать переопределением угла θ , в то время как оставшиеся две отвечают параметру вращения и НУТ–заряду.

Для решения (1.116) воспользуемся подстановкой

$$a(\theta) = e^{q(\theta)},\tag{1.118}$$

что согласуется с выбранной сигнатурой метрики и приводит к более простому уравнению третьего порядка на функцию $q(\theta)$. Поскольку оно не содержит в явном виде θ и $q(\theta)$, две последовательные подстановки

$$q'(\theta) = p(\theta), \quad p'(\theta) = s(p(\theta)) \tag{1.119}$$

сводят его к уравнению первого порядка на s(p). Оно, в свою очередь, может быть упрощено при помощи введения новой независимой переменной $y = p^2$:

$$(4+5y+y^2) + s(y)(2+5y-2s(y)+6ys'(y)) = 0, (1.120)$$

где $s'(y) = \frac{ds(y)}{dy}$. Данное уравнение является разновидностью уравнения Абеля второго типа (см., например, [83]). Его общее решение можно найти только в исключительных случаях. Используя частное решение -1 - y, рассмотрим подстановку

$$s(y) = -1 - y + u(y), \tag{1.121}$$

которая приводит к уравнению на u(y):

$$-2u^{2} - 6y(1+y)u' + 3u(2+y+2yu') = 0.$$
(1.122)

Коэффициенты перед неизвестной функцией u(y) и ее производной u'(y) являются квадратичными полиномами по y. Общее решение (1.122) будем искать в параметрическом виде:

$$\begin{cases} y = w(z), \\ u = zw(z), \end{cases}$$
(1.123)

что дает:

$$w(z) = \frac{-9 + 6z + 2C_1\sqrt{4z - 3}}{2z^2},$$
(1.124)
где C_1 – постоянная интегрирования.

При построении функции $a(\theta)$ оказывается предпочтительным оставить зависимость от параметра z вплоть до самого последнего шага. В результате имеем:

$$a(z) = \frac{C_3 z}{4z - 3}, \quad \theta(z) = C_2 - \arctan\frac{-9 + 2C_1\sqrt{4z - 3}}{3\sqrt{-9 + 4C_1\sqrt{4z - 3} + 3(4z - 3)}}, \quad (1.125)$$

где C_2 и C_3 – постоянные интегрирования. Учитывая, что от C_2 можно избавиться переопределением θ , находим конечные выражения:

$$a(\theta) = L_1(1 + \cos^2 \theta) + L_2 \cos \theta, \quad b(\theta) = \frac{(4L_1^2 - L_2^2)\sin^2 \theta}{a(\theta)}, \quad (1.126)$$

где L_1 и L_2 – произвольные постоянные, определенным образом зависящие от констант C_1 и C_2 . L_1 оказывается связанной с параметром вращения экстремальной черной дыры Керра, в то время как L_2 представляет НУТ–заряд [84]. Стоить заметить, что итоговая метрика (1.115) с коэффициентными функциями (1.126) имеет лоренцеву сигнатуру при условии, что

$$4L_1^2 > L_2^2. (1.127)$$

1.9.2 D = 5 метрика Майерса–Перри-НУТ вблизи горизонта событий и конформные инварианты

В этом разделе мы применим описанный выше метод, использованный для построения общих конформно-инваринтных метрик в четырех измерениях, к случаю пяти измерений. Хотя метрики Керра–НУТ были построены в явном виде в работе [85], они были получены в предположении, что все параметры вращения не равны друг другу. В частности, метрики в [85] вырождаются, когда хотя бы два из параметров вращения совпадают.

Рассмотрим метрику специального вида, построенную из конформных инвариантов:

$$ds^{2} = a(\theta) \left(r^{2} dt^{2} - \frac{dr^{2}}{r^{2}} - d\theta^{2} \right) - b(\theta) (rdt + d\varphi_{1})^{2} - c(\theta) (rdt + d\varphi_{2})^{2} + d(\theta) (d\varphi_{1} - d\varphi_{2})^{2}.$$
(1.128)

Структура этой метрики аналогична D = 5 метрике Майерса–Перри вблизи горизонта событий [66]:

$$ds^{2} = \alpha(\theta) \left(r^{2}dt^{2} - \frac{dr^{2}}{r^{2}} - d\theta^{2} \right) - \frac{a_{2}(1 - \sin\theta)(2a_{1} + \alpha(\theta))}{\alpha(\theta)} (rdt + d\varphi_{1})^{2} - \frac{a_{1}(1 + \sin\theta)(2a_{2} + \alpha(\theta))}{\alpha(\theta)} (rdt + d\varphi_{2})^{2} + \frac{a_{1}a_{2}\cos^{2}\theta}{\alpha(\theta)} (d\varphi_{1} - d\varphi_{2})^{2}, \qquad (1.129)$$
$$\alpha(\theta) = a_{1} + a_{2} + (a_{1} - a_{2})\sin\theta,$$

где a_1 и a_2 – параметры вращения. Функции $a(\theta), b(\theta), c(\theta)$ и $d(\theta)$ определяются из уравнений Эйнштейна в вакууме.

Детальный анализ компонент тензора Риччи показывает, что из $R_{t\varphi_1}$, $R_{t\varphi_2}$, R_{rr} , $R_{\varphi_1\varphi_2}$ мы получаем набор связанных обыкновенных дифференциальных уравнений второго порядка в нормальной форме:

$$a'' = \frac{(2a(b+c) - 4a^2 + (a')^2)g - aa'g'}{2ag},$$
(1.130)

$$b'' = \frac{-(2b(b+c) + a'b')g + ab'g' + 2ab(c'd' - b'c' + b'd')}{2ag}$$
(1.131)

$$c'' = \frac{-(2c(b+c) + a'c')g + ac'g' + 2ac(c'd' - b'c' + b'd')}{2aa},$$
(1.132)

$$d'' = \frac{-(2bc + a'd')g + ad'g' + 2ad(c'd' - b'c' + b'd')}{2ag},$$
(1.133)

где введено обозначение⁹

$$g = bc - d(b + c),$$
 (1.134)

в то время, как уравнение $R_{\theta\theta} = 0$ приводит к условию совместности

$$c'd' - b'c' + b'd' = \frac{(4a^2 - a(b+c) + (a')^2)g + 2aa'g'}{a^2}.$$
(1.135)

Еще одно условие совместности мы получаем из определения (1.134) и уравнений (1.130)–(1.133):

$$g'' = \frac{-(2(b+c)g + a'g')g + a(g')^2}{2ag}.$$
(1.136)

⁹Нужно отметить, что g пропорционально определителю метрики $det(d_{ij}) = 4a^3g$.

Все прочие уравнения Эйнштейна оказываются выполненными тождественно при условии, что имеют место равенства (1.130)–(1.133).

Теперь обсудим технические детали построения решения системы обыкновенных дифференциальных уравнений (1.130)–(1.133) и условий совместности (1.135), (1.136).

Умножая уравнения (1.130) и (1.136) на g и a, соответственно, и беря их сумму, получаем простое дифференциальное уравнение:

$$(ag)'' = \frac{(ag)'}{2ag} - 2ag, \tag{1.137}$$

общее решение которого имеет вид:

$$ag = C_1 \cos^2(\theta + C_2), \tag{1.138}$$

где C_1 и C_2 – постоянные интегрирования. Далее мы отбросим постоянную C_2 , поскольку ее всегда можно убрать, переопределив θ . Принимая во внимание определение (1.134), заключаем, что одну из функций a, b, c или d можно алгебраически выразить через все остальные. Для определенности положим:

$$d = \frac{abc - C_1 \cos^2 \theta}{a(b+c)}.$$
 (1.139)

Еще одно алгебраическое соотношение можно получить, подставив выражение для произведения *ag* в уравнение (1.130), что дает:

$$b + c = a'' + 2a - a' \left(\tan \theta + \frac{a'}{a} \right).$$
 (1.140)

Принимая во внимание это выражение и вычисляя сумму уравнений (1.131), (1.132), мы имеем обыкновенное дифференциальное уравнение четвертого порядка на $a(\theta)$:

$$a \left(3a' \cos 2\theta \sec^2 \theta \tan \theta + a''(7 - 3 \sec^2 \theta) + a^{(4)} \right) -$$

$$-a' \left(a'(-2 + 3 \sec^2 \theta) + 3a'' \tan \theta + a^{(3)} \right) = 0.$$
(1.141)

Чтобы упростить его, мы вводим новую переменную:

$$y = \sin \theta, \tag{1.142}$$

представляем $a(\theta)$ в виде:

$$a(\theta) = e^{q(y(\theta))}, \qquad (1.143)$$

и используем две последовательные подстановки:

$$q' = p, \quad p^3 + 3pp' + p'' = u,$$
 (1.144)

где штрих обозначает производную по *y*. Тогда уравнение четвертого порядка на *a* сводится к уравнению первого порядка на *u*:

$$(1 - y^2)u' - 6yu = 0, (1.145)$$

решение которого имеет простой вид:

$$u(y) = \frac{u_0}{(y^2 - 1)^3},\tag{1.146}$$

где u_0 – постоянная интегрирования. Общее решение второго уравнения (1.144) находится при помощи подстановки

$$p = \frac{w'}{w},\tag{1.147}$$

повышающей порядок уравнения на один:

$$\frac{w^{(3)}}{w} = \frac{u_0}{(y^2 - 1)^3}.$$
(1.148)

Учитывая соотношения q' = p и p = w'/w, мы заключаем, что $a(\theta)$ совпадает с $w(y(\theta))$ с точностью до постоянного множителя. Интегрирование уравнения на w тогда дает:

 $\langle \alpha \rangle$

$$a(y) = (y^2 - 1) \left(a_1 \left(\frac{y - 1}{y + 1} \right)^{a_4} + a_2 \left(\frac{y - 1}{y + 1} \right)^{\frac{a_4 + \sqrt{4 - 3a_4^2}}{2}} + a_3 \left(\frac{y - 1}{y + 1} \right)^{\frac{a_4 - \sqrt{4 - 3a_4^2}}{2}} \right),$$
(1.149)

где $y = \sin \theta$ и a_1, a_2, a_3, a_4 – постоянные интегрирования.

Поскольку нас, в основном, интересует построение НУТ–расширения пятимерной геометрии Майерса–Перри, и a(y) в предшествующей формуле является трансцендентной функцией, далее мы будем выбирать параметр a_4 так, что он будет принимать одно из трех целочисленных значений -1, 0, 1, что дает¹⁰:

$$a(\theta) = L_1 + L_2 \sin \theta + L_3 \sin^2 \theta,$$
 (1.150)

где L_1, L_2, L_3 – произвольные параметры. Сравнивая с (1.129), видим, что первые две постоянные могут быть связаны с параметрами вращения как $L_1 = a_1 + a_2$, $L_2 = a_1 - a_2$, а L_3 можно интерпретировать как НУТ–заряд.

Если известен явный вид функции a, то можно сразу найти g, b + c и c'd' - b'c' + b'd'. Теперь обыкновенное дифференциальное уравнение (1.131) может быть проинтегрировано, что дает:

$$b(\theta) = \frac{b_1(L_2 + 2L_3\sin\theta) + b_2(2L_1\sin\theta + L_2\sin^2\theta)}{a(\theta)},$$
 (1.151)

где b_1, b_2 – постоянные интегрирования, и функции, при которых они стоят, являются двумя линейно независимыми решениями уравнения (1.131). Поскольку нас, главным образом, интересует построение НУТ–деформации геометрии пятимерной черной дыры Майерса–Перри вблизи горизонта событий, мы выбираем b_1 и b_2 таким образом, что получившаяся метрика сводится к (1.129) в пределе $L_3 \rightarrow 0$, что дает:

$$b_1 = \frac{1}{2L_2} (2L_1^2 - L_2(L_1 + L_2)), \quad b_2 = \frac{1}{2} (L_2 - L_1), \quad (1.152)$$

и в конечном итоге мы получаем $b(\theta)$ в следующем виде:

$$b(\theta) = \frac{(L_1 - L_2)(2L_1 + L_2 - 2(L_1 - L_3(1 + 2L_1/L_2))\sin\theta - L_2\sin^2\theta)}{2a(\theta)}.$$
 (1.153)

Поскольку уравнение (1.132) на $c(\theta)$ имеет такую же форму, что и уравнение на $b(\theta)$, его решение имеет аналогичный вид:

$$b(\theta) = \frac{c_1(L_2 + 2L_3\sin\theta) + c_2(2L_1\sin\theta + L_2\sin^2\theta)}{a(\theta)},$$
 (1.154)

¹⁰Возможно, что иррациональные значения a_4 ведут к тривиальным решениям. Например, полагая $a_1 = a_3 = 0$, $a_4 = \frac{1}{4}(1 - \sqrt{13})$, мы получаем $a(\theta) = a_2 \cos \theta (1 + \sin \theta)$. Легко проверить, что при таком виде $a(\theta)$ мы имеем $b(\theta) = c(\theta) = 0$, что ведет к сингулярной метрике.

где c_1, c_2 – постоянные интегрирования. Учитывая соотношение (1.140), мы можем связать c_1 и c_2 с b_1, b_2, L_1, L_2 и L_3 . Конечный результат имеет вид:

$$c(\theta) = \frac{L_1 L_2 - L_2^2 + 2L_1^2 + 4L_1 L_3 + 2(L_1^2 + L_1 L_2 + L_3 (L_1 - L_2 - 2L_1^2/L_2))\sin\theta}{2(L_1 + L_2 \sin\theta + L_3 \sin^2\theta)} + \frac{(L_2 (L_1 + L_2) - 4L_3 (L_1 + L_3))\sin^2\theta}{2(L_1 + L_2 \sin\theta + L_3 \sin^2\theta)}.$$
(1.155)

Теперь остается найти функцию *d*. Наиболее простой способ решить уравнение (1.133) – это начать с подстановки

$$d(\theta) = \frac{d_1 + d_2 \sin \theta + d_3 \sin^2 \theta}{a(\theta)}$$
(1.156)

и затем определить константы d_1, d_2, d_3 из уравнения (1.133) и условий совместности (1.135), (1.136). Таким образом d определяется единственным образом. Для облегчения сравнения с (1.129) мы представляем постоянные в виде степенных рядов по L_3 :

$$\begin{aligned} d_{1} &= (L_{1} - L_{2}) \left(L_{1}(L_{1} - L_{2})L_{2}^{2}(L_{1} + L_{2})^{2} + L_{3}L_{2}(L_{1} + L_{2})(4L_{1}^{3} + L_{1}^{2}L_{2} + \\ &+ L_{3}^{3}) - L_{3}^{2}L_{1}(2L_{1} + L_{2})(2L_{1}^{2} - 3L_{1}L_{2} + 3L_{2}^{2}) - L_{3}^{3}(2L_{1} + L_{2})(2L_{1}^{2} - \\ &- L_{1}L_{2} + L_{2}^{2}) \right) / d_{4}, \\ d_{2} &= L_{3}(L_{1} - L_{2}) \left(-4L_{1}L_{2}^{3}(L_{1} + L_{2}) + 2L_{3}L_{2}(L_{1} + L_{2})(3L_{1}^{2} + 2L_{1}L_{2} + L_{2}^{2}) - \\ &- 8L_{3}^{2}L_{1}^{2}L_{2} - 4L_{3}^{3}L_{2}(2L_{1} + L_{2}) \right) / d_{4}, \\ d_{3} &= -(L_{1} - L_{2}) \left(L_{1}(L_{1} - L_{2})L_{2}^{2}(L_{1} + L_{2})^{2} - L_{3}L_{2}(L_{1} + L_{2}) \left(4L_{1}^{3} - 5L_{1}^{2}L_{2} - \\ &- L_{2}^{3} \right) + L_{3}^{2}L_{1}(4L_{1}^{3} - 4L_{1}^{2}L_{2} - L_{1}L_{2}^{2} - L_{3}^{3}) + L_{3}^{3}(4L_{1}^{3} - 3L_{1}L_{2}^{2} - 3L_{3}^{3}) \right) / d_{4}, \end{aligned}$$

$$(1.157)$$

где d₄ имеет вид:

$$d_4 = 4L_2^2 \left(L_1 (L_1^2 - L_2^2) + L_3 (L_1^2 + L_2^2) - L_3^2 L_1 - L_3^3 \right).$$
(1.158)

В процессе также определяется постоянная c_1 , входящая в выражение для d, приведенное выше:

$$c_1 = \frac{(L_1 - L_2)^2 (L_1 L_2 (L_1 + L_2) - 2L_3 L_1^2 - L_3^2 (2L_1 + L_2))^2}{2L_2^2 (L_1 - L_3) (L_1^2 - L_2^2 + L_3 (2L_1 + L_3))}.$$
(1.159)

Выпишем теперь явно найденное решение, которое является обобщением известной геометрии черной дыры Майерса–Перри в пяти измерениях:

$$\begin{aligned} a(\theta) &= L_1 + L_2 \sin \theta + L_3 \sin^2 \theta, \quad d(\theta) = \frac{a(\theta)b(\theta)c(\theta) - N \cos^2 \theta}{a(\theta)(b(\theta) + c(\theta))}, \\ b(\theta) &= \frac{(L_1 - L_2)(2L_1 + L_2 - 2(L_1 - L_3(1 + 2L_1/L_2))\sin \theta - L_2 \sin^2 \theta)}{2a(\theta)}, \\ c(\theta) &= \frac{2L1(L_1 + L_3) - L_2^2 + 2L_2(L_1 - L_3)\sin \theta + (L_2^2 - 2L_3(L_1 + L_3))\sin^2 \theta}{a(\theta)} - b(\theta), \end{aligned}$$

$$N = \frac{(L_1 - L_2)^2 (L_1 L_2 (L_1 + L_2) - 2L_3 L_1^2 - L_3^2 (2L_1 + L_2))^2}{2L_2^2 (L_1 - L_3) (L_1^2 - L_2^2 + L_3 (2L_1 + L_3))},$$
(1.160)

где L_1, L_2 и L_3 являются произвольными постоянными. Как было упомянуто выше, сравнение с (1.129) показывает, что L_1 и L_2 связаны с параметрами вращения a_1 и a_2 следующим образом:

$$L_1 = a_1 + a_2, \quad L_2 = a_1 - a_2,$$
 (1.161)

в то время как L_3 можно интерпретировать как НУТ–заряд. В пределе $L_3 \to 0$ это решение, как и должно быть, сводится к (1.129). Нужно отметить, что метрика имеет лоренцеву сигнатуру при условии, что

$$(L_1 - L_3)(L_1^2 - L_2^2 + 2L_1L_3 + L_3^2) > 0. (1.162)$$

В нашем предыдущем рассмотрении мы фиксировали постоянные b_1 и b_2 , входящие в выражение для функции $b(\theta)$ таким образом, чтобы она соответствовала виду метрики Майерса–Перри в пяти измерениях вблизи горизонта, который она принимает в пределе $L_3 \rightarrow 0$. Оставляя их произвольными, можно построить двухпараметрическое расширение решения (1.160):

$$\tilde{b}(\theta) = b(\theta) + \frac{P_1 L_2 + 2(P_2 L_1 + P_1 L_3) \sin \theta + P_2 L_2 \sin^2 \theta}{a(\theta)},$$

$$\tilde{c}(\theta) = c(\theta) - \frac{P_1 L_2 + 2(P_2 L_1 + P_1 L_3) \sin \theta + P_2 L_2 \sin^2 \theta}{a(\theta)},$$

$$\tilde{d}(\theta) = d(\theta) + \frac{\tilde{d}_1 + \tilde{d}_2 \sin \theta + \tilde{d}_3 \sin^2 \theta}{a(\theta)},$$
(1.163)

где P_1 и P_2 – новые постоянные параметры. Функция $a(\theta)$ сохраняет свой вид, а постоянные $\tilde{d}_1, \tilde{d}_2, \tilde{d}_3$ выражаются через L_1, L_2, L_3, P_1 и P_2 следующим образом:

$$\begin{split} \tilde{d}_{1} &= \left(-2P_{2}L_{1}(-L_{1}^{3}L_{2} + (L_{1} - P_{1})L_{2}^{3} + 2L_{1}(L_{1}^{2} + P_{1}L_{2} - L_{1}L_{2})L_{3} + \right. \\ &+ \left. \left. \left. \left. \left(2P_{1}L_{2} + (L_{1} - L_{2})(2L_{1} + L_{2})\right)L_{3}^{2}\right) - P_{1}\left(P_{1}L_{1}L_{2}^{3} - 2L_{2}\left(L_{1}^{3} + 2L_{1}^{2}L_{2} + \right. \right. \\ &+ P_{1}L_{2}^{2} - L_{1}L_{2}^{2}\right)L_{3} + 2L_{1}(2L_{1}^{2} - 2L_{1}L_{2} + L_{2}(P_{1} + L_{2}))L_{3}^{2} + 2(2L_{1}^{2} + P_{1}L_{2} - \\ &- L_{1}L_{2})L_{3}^{3}\right) - P_{2}^{2}L_{1}L_{2}(-L_{2}^{2} + 2L_{1}(L_{1} + L_{3})))/\tilde{d}_{4}, \end{split}$$
(1.164)
$$\tilde{d}_{2} = L_{2}(P_{1}^{2}L_{2}(L_{2}^{2} - 4L_{1}L_{3}) + 2P_{1}\left(L_{1}^{2}(L_{1} - 2P_{2})L_{2} + (P_{2} - L_{1})L_{2}^{3} + \\ &+ 2L_{1}^{2}(L_{2} - L_{1})L_{3} + (2L_{1}^{2} + L_{1}L_{2} + L_{2}(L_{2} - 2P_{2}))L_{3}^{2} - 2L_{1}L_{3}^{3} - 2L_{3}^{4}\right) + \\ &+ 2L_{1}^{2}(L_{2} - 2L_{3})L_{3} + 2L_{1}^{3}(L_{2} + 2L_{3}) + L_{2}^{2}(P_{2}L_{2} + 2L_{3}^{2}) - \\ &- 2L_{1}(L_{2}^{3} + L_{2}(2P_{2} - L_{3})L_{3} + 2L_{1}^{3}(L_{2} + 2L_{3}) + L_{2}^{2}(P_{2}L_{2} + 2L_{3}^{2}) - \\ &- 2L_{1}(L_{2}^{3} + L_{2}(2P_{2} - L_{3})L_{3} + 2L_{3}^{3})) / \tilde{d}_{4}, \end{aligned}$$
$$\tilde{d}_{3} = \left(-P_{2}^{2}L_{2}(2L_{1}^{3} - 2L_{1}L_{2}^{2} + 2L_{1}^{2}L_{3} + L_{2}^{2}L_{3}) - P_{1}L_{3}(-P_{1}L_{2}^{3} - \\ &- 2L_{1}(L_{2}^{3} + L_{2}(2P_{2} - L_{3})L_{3} + 2L_{1}^{2}L_{3} + L_{2}^{2}L_{3}) - P_{1}L_{3}(-P_{1}L_{2}^{3} - \\ &- 2L_{1}(L_{2}^{3} - 2L_{3}) + 2(P_{1} - L_{2})L_{2}L_{3}^{2} + 4L_{1}^{2}L_{3}(L_{3} - L_{2}) + 2L_{1}L_{2}(L_{2}^{2} + \\ &+ (P_{1} - L_{3})L_{3})) - 2P_{2}\left(-L_{1}^{4}(L_{2} - 2L_{3}) + 2P_{1}L_{1}L_{2}L_{3}^{2} + 2L_{1}^{3}L_{3}(L_{3} - L_{2}) + \\ &+ (P_{1} - L_{3})L_{3})) - 2P_{2}\left(-L_{1}^{4}(L_{2} - 2L_{3}) + 2P_{1}L_{1}L_{2}L_{3}^{2} + 2L_{1}^{3}L_{3}(L_{3} - L_{2}) + \\ &+ (P_{1} - L_{3})L_{3}\right) - 2P_{2}\left(-L_{1}^{4}(L_{2} - 2L_{3}) + 2P_{1}L_{1}L_{2}L_{3}^{2} + 2L_{1}^{3}L_{3}(L_{3} - L_{2}) + \\ &+ (P_{1} - L_{3})L_{3}\right) - 2P_{2}\left(-L_{1}^{4}(L_{2} - 2L_{3}) + 2P_{1}L_{1}L_{2}L_{3}^{2} + 2L_{3}^{3}(-P_{1}L_{2} + L_{3}^{2})\right)\right)/\tilde{d}_{4}, \\ \tilde{d}_{4} = 2L_{2}(L_{1} - L_{3})(L_{1} - L_{2} + L_$$

Непосредственным вычислением можно проверить, что эти деформированные функции дают решение вакуумных уравнений Эйнштейна, которое сводится к (1.160) в пределе $P_1, P_2 \rightarrow 0$. Геометрическая или физическая интерпретация дополнительных параметров остается неясной.

Таким образом, в первой главе диссертации нами получены следующие новые научные результаты. Построена метрика, описывающая экстремальную черную дыру Майерса–Перри–АдС вблизи горизонта событий для специального случая, когда все параметры вращения совпадают. С использованием инвариантов конформной группы SO(2, 1), построено новое решение вакуумных уравнений Эйнштейна, которое определяет D = 5 метрику Майерса–Перри с ненулевым НУТ зарядом вблизи горизонта событий. Для геометрии экстремальной черной дыры Керра–Ньюмана–АдС вблизи горизонта событий доказана приводимость тензора Киллинга второго ранга. Построено явное выражение, связывающее компоненты тензора Киллинга второго ранга и компоненты векторов Киллинга, отвечающих конформной группе SO(2, 1).

Глава 2

Интегрируемые системы, ассоциированные с геометрией экстремальных черных дыр вблизи горизонта событий

Как отмечалось во Введении, интерес к геометрии экстремальных черных дыр вблизи горизонта событий мотивирован, в первую очередь, гипотезой [6] о существовании двумерной конформной теории поля, дуальной экстремальной черной дыре Керра вблизи горизонта событий (Керр/КТП-соответствие). Вместе с тем, наличие конформной симметрии, характеризующей такие геометрии, позволяет проанализировать ряд важных вопросов, относящихся к конформной механике [28, 30, 33, 39, 59, 86, 87, 88, 89, 90] и теории интегрируемых систем [66, 67].

В недавних работах [63, 64] был предложен метод построения новых интегрируемых систем из конформной механики общего вида посредством разделения динамики углового сектора и радиальной канонической пары. Вычисление оператора Казимира конформной алгебры показало, что он не зависит от радиальной переменной, и его можно использовать как гамильтониан редуцированной сферической механики. В данной главе конформная симметрия, характерная для широкого класса экстремальных черных дыр вблизи горизонта событий, будет использована для построения конформной механики. Последняя, в свою очередь, служит основой для построения новых интегрируемых систем, реализованных в виде сферической механики.

В этом отношении черная дыра Майерса-Перри с одинаковыми параметрами вращения представляет особый интерес, так как ее группа симметрий расширена до унитарной группы, дополненной конформным множителем вблизи горизонта. Сферическая механика в таком пространстве была построена в работах [66, 67]. Естественное обобщение геометрии Майерса–Перри можно получить включением космологической постоянной. В этом случае имеется дополнительный параметр, который на уровне сферической механики дает дополнительную константу связи. Важно подчеркнуть, что введение космологической постоянной не нарушает унитарную симметрию, и значит, возникает возможность построить суперинтегрируемые механические системы, аналогичные [66, 67].

Данная глава посвящена систематическому изучению конформной механики, ассоциированной с черными дырами Керра [59], Керра–Ньюмана–АдС [86], Майерса–Перри [67] и Майерса–Перри-АдС [68], и возникающими в этом контексте новыми интегрируемыми системами.

2.1 Конформная механика, ассоциированная с геометрией экстремальной черной дыры Керра

Функционал действия массивной релятивистской частицы, движущейся вблизи горизонта событий экстремальной черной дыры Керра имеет вид:

$$\mathcal{S} = -m \int dt \sqrt{\frac{1 + \cos^2\theta}{2} \left(\left(\frac{r}{r_0}\right)^2 - \left(\frac{r_0}{r}\right)\dot{r}^2 - r^2\dot{\theta}^2 \right) - \frac{2r_0^2\sin^2\theta}{1 + \cos^2\theta} \left(\dot{\varphi} + \frac{r}{r_0^2}\right)^2},\tag{2.1}$$

где *т* – масса частицы.

Следуя работе [59], динамику этой механической системы будем анализировать в гамильтоновом формализме, для чего введем в рассмотрение импульсы $(p_r, p_{\theta}, p_{\varphi})$, канонически сопряженные координатам (r, θ, φ) . Гамильтониан рассматриваемой системы имеет вид:

$$H = \frac{r}{r_0^2} \left(\sqrt{\frac{1 + \cos^2 \theta}{2} (mr_0)^2 + (rp_r)^2 + p_\theta^2 + \left(\frac{1 + \cos^2 \theta}{2\sin \theta}\right)^2 p_\varphi^2} - p_\varphi \right).$$
(2.2)

Гамильтониан является интегралом движения, отвечающим инвариантности метрики относительно трансляций времени. Прочие изометрии метрики Керра вблизи горизонта событий дают следующие сохраняющиеся величины:

$$K = \frac{r}{r_0^2} \left(\sqrt{\frac{1 + \cos^2 \theta}{2} (mr_0)^2 + (rp_r)^2 + p_\theta^2 + \left(\frac{1 + \cos^2 \theta}{2\sin \theta}\right)^2 p_\varphi^2} + p_\varphi \right) + t^2 H + 2trp_r, \quad D = tH + rp_r, \quad P = p_\varphi,$$
(2.3)

которые отвечают, соответственно, специальным конформным преобразованиям, дилатациям и вращению вокруг оси z. Данные функции образуют алгебру $so(2,1)\oplus$ u(1) относительно канонической скобки Пуассона $\{\cdot,\cdot\}$:

$$\{H, D\} = H, \quad \{H, K\} = 2D, \quad \{D, K\} = K.$$
 (2.4)

Кроме того, используя тензор Киллинга (1.10), получаем дополнительный интеграл движения:

$$L = \frac{1 + \cos^2\theta}{2} (mr_0)^2 + p_\theta + \left(\frac{1 + \cos^2\theta}{2\sin\theta}\right)^2 p_\varphi^2, \qquad (2.5)$$

который, однако, оказывается приводимым так как его можно выразить через остальные интегралы движения. Вычисляя элемент Казимира алгебры so(2,1), получаем

$$HK - D^2 = L - P^2. (2.6)$$

Следовательно, L является квадратичной комбинацией интегралов движения, отвечающих группе симметрий $SO(2,1) \times U(1)$. Несмотря на то, что вблизи горизонта событий группа симметрий метрики оказывается расширенной, тензор Киллинга является приводимым [59]. Проинтегрируем теперь канонические уравнения движения

$$\dot{\zeta}^a = \{\zeta^a, H\},\tag{2.7}$$

где $\zeta^a = (r, \theta, \varphi, p_r, p_\theta, p_\varphi)$. Сохраняющиеся величины (2.2), (2.3), (2.5) позволяют определить динамику радиальной пары канонических переменных:

$$r(t) = \frac{r_0^2 E}{\sqrt{a(t)^2 + L} - P}, \quad p_r(t) = \frac{a(t)(\sqrt{a(t)^2 + L} - P)}{r_0^2 E}.$$
 (2.8)

Здесь E = H – энергия, и было принято обозначение $a(t) = D - tE = rp_r$. Нужно заметить, что $\dot{r}(t)$ пропорционален a(t) с положительным коэффициентом. В зависимости от начальных данных, частица либо летит прямо к горизонту событий, расположенному в точке r = 0, либо движется прочь от него в течение некоторого времени, а затем поворачивает в момент времени t = D/E и стремится к r = 0.

Перейдем теперь к канонической паре переменных (θ, p_{θ}) . Интеграл движения (2.5) позволяет ыразить p_{θ} через θ :

$$p_{\theta} = \sqrt{L - \frac{1 + \cos^2 \theta}{2} (mr_0)^2 - \left(\frac{1 + \cos^2 \theta}{2\sin \theta}\right)^2 P^2},$$
 (2.9)

где для определенности был выбран положительный знак корня. Если подставить это выражение в уравнение движения на координату θ , то можно разделить переменные и найти решение в квадратурах, которое выражается через эллиптические функции.

Имеется особый класс решений, который характеризуется дополнительным ограничением, связывающим параметры частицы и черной дыры, вида:

$$P^2 = 2(mr_0)^2. (2.10)$$

В этом случае (2.9) сводится к

$$p_{\theta} = \frac{1}{\sin \theta} \sqrt{(L - (mr_0)^2) - (L + (mr_0)^2) \cos^2 \theta}, \qquad (2.11)$$

а оставшиеся уравнения движения на θ и φ могут быть проинтегрированы в эле-

ментарных функциях:

$$\begin{aligned} \cos\theta &= \sqrt{\frac{L - (mr_0)^2}{L + (mr_0)^2}} \cos\left(\sqrt{L + (mr_0)^2}(s(t) + \theta_0)\right), \\ \varphi(t) &= \frac{P}{\sqrt{2}mr_0} \arctan\left[\frac{\sqrt{L + (mr_0)^2}}{\sqrt{2}mr_0} \tan\left(\sqrt{L + (mr_0)^2}(s(t) + \theta_0)\right)\right] - \\ &- \frac{P}{16\left(L + (mr_0)^2\right)^{3/2}} \left[(14L + 10(mr_0)^2)\sqrt{L + (mr_0)^2}(s(t) + \theta_0) + \\ &+ (L - (mr_0)^2) \sin\left(2\sqrt{L + (mr_0)^2}(s(t) + \theta_0)\right) \right] + \log\left(a(t) + \sqrt{L + a(t)}\right) + \\ &+ \varphi_0 - Ps(t), \end{aligned}$$
(2.12)

где θ_0 и φ_0 – постоянные интегрирования и где было обозначено:

$$s(t) = -\frac{1}{\sqrt{L - P^2}} \left[\arctan\left(\frac{a(t)}{\sqrt{L - P^2}}\right) + \arctan\left(\frac{Pa(t)}{\sqrt{(L - P^2)(L + a(t)^2)}}\right) \right].$$
(2.13)

Переходя к декартовым координатам, можно убедиться, что траектория движения такой частицы выглядит как петля, начинающаяся и заканчивающаяся в r = 0. Отметим, что массивная заряженная частица, движущаяся вблизи горизонта событий экстремальной черной дыры Райсснера–Нордстрема, ведет себя похожим образом [93].

2.2 Конформная механика, ассоциированная с геометрией экстремальной черной дыры Керра– Ньюмана–АдС

Используя функционал действия для пробной частицы во внешнем гравитационном и электромагнитном полях (1.19)

$$\mathcal{S} = -\int (mds + eA) \tag{2.14}$$

несложно получить уравнения движения, отнесенные к натуральному параметру:

$$m\left(\frac{d^2x^l}{ds^2} + \Gamma^l_{ik}\frac{dx^i}{ds}\frac{dx^k}{ds}\right) - eg^{lm}F_{mh}\frac{dx^h}{ds} = 0, \qquad (2.15)$$

где *е* – электрический заряд, а *m* – масса частицы.

Из общих соображений следует, что если
 ξ – вектор Киллинга метрики, то

$$\xi^k (mg_{kl}\frac{dx^l}{ds} + eA_k) \tag{2.16}$$

является интегралом движения. Инвариантность 1-формы калибровочного поля требует выполнения следующего соотношения:

$$\partial_i (A_j \xi^j) + \xi^j F_{ji} = 0.$$
 (2.17)

Что касается тензора Киллинга, то аналогичным образом можно показать, что он дает интеграл движения

$$K_{ij}\frac{dx^i}{ds}\frac{dx^j}{ds},\tag{2.18}$$

при условии, что

$$F_n^{\ m}K_{mp} + F_p^{\ m}K_{mn} = 0. (2.19)$$

Прямое вычисление показывает, что тензор Киллинга (1.25) удовлетворяет условию (2.19).

Рассмотрим явное выражение для функционала действия (2.14)¹:

$$\mathcal{S} = -\int dt \left(m\sqrt{\Gamma r^2 - \frac{\Gamma}{r^2}\dot{r}^2 - \beta\dot{\theta}^2 - \gamma(\dot{\varphi} + kr)^2} + ef(\dot{\varphi} + kr) \right), \tag{2.20}$$

где $\beta \equiv \Gamma \alpha$. Введем канонические импульсы $p_{\mu} = \frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}}, \ \mu = (r, \theta, \varphi)$:

$$p_{r} = \frac{\Gamma/r^{2}}{\sqrt{\Gamma r^{2} - \frac{\Gamma}{r^{2}}\dot{r}^{2} - \beta\dot{\theta}^{2} - \gamma(\dot{\varphi} + kr)^{2}}} m\dot{r},$$

$$p_{\theta} = \frac{\beta}{\sqrt{\Gamma r^{2} - \frac{\Gamma}{r^{2}}\dot{r}^{2} - \beta\dot{\theta}^{2} - \gamma(\dot{\varphi} + kr)^{2}}} m\dot{\theta},$$

$$p_{\varphi} = -ef + \frac{\gamma}{\sqrt{\Gamma r^{2} - \frac{\Gamma}{r^{2}}\dot{r}^{2} - \beta\dot{\theta}^{2} - \gamma(\dot{\varphi} + kr)^{2}}} m(\dot{\varphi} + kr),$$
(2.21)

через которые выразим скорости:

$$\dot{r}^2 = \frac{\Omega}{\left(\frac{\Gamma}{r^2}\right)^2} p_r^2, \quad \dot{\theta}^2 = \frac{\Omega}{\beta^2} p_\theta^2, \quad (\dot{\varphi}^2 + kr)^2 = \frac{\Omega}{\gamma^2} (p_\varphi + ef)^2, \tag{2.22}$$

¹Здесь и далее $\dot{a} \equiv \frac{da}{dt}$

где

$$\Omega = \frac{\Gamma r^2}{\frac{p_r^2}{\frac{\Gamma}{r^2}} + \frac{p_\theta}{\beta} + \frac{(p_\varphi + ef)^2}{\gamma} + m^2}.$$
(2.23)

В итоге, используя (2.22), находим гамильтониан:

$$H = r \left(\sqrt{p_r^2 r^2 + \frac{1}{\alpha} p_\theta^2 + \frac{\Gamma}{\gamma} (p_\varphi + ef)^2 + \Gamma m^2} - k p_\varphi \right).$$
(2.24)

Займемся теперь вычислением сохраняющихся величин в данной теории. Прежде всего можно убедиться, что с вектором Киллинга *H* связан гамильтониан (2.24). Что касается остальных векторов, то непосредственные вычисления дают:

$$H = r \left(\sqrt{p_r^2 r^2 + \frac{p_\theta^2}{\alpha} + \frac{\Gamma}{\gamma} (p_\varphi + ef)^2 + \Gamma m^2} - k p_\varphi \right),$$

$$D = t H + r p_r,$$

$$K = t^2 H + 2 t r p_r + \varkappa,$$

$$P = p_\varphi,$$

(2.25)

где

$$\varkappa = \frac{1}{r} \left(\sqrt{p_r^2 r^2 + \frac{p_\theta^2}{\alpha} + \frac{\Gamma}{\gamma} (p_\varphi + ef)^2 + \Gamma m^2} + k p_\varphi \right).$$
(2.26)

Можно заметить, что величины H, rp_r, \varkappa , из которых построены эти интегралы движения, сами удовлетворяют структурным соотношениям алгебры so(2,1), а именно:

$$\{H, rp_r\} = H, \quad \{H, \varkappa\} = 2rp_r, \quad \{rp_r, \varkappa\} = \varkappa.$$
 (2.27)

Этот результат позволяет также убедиться в том, что интегралы движения (2.25) образуют алгебру $so(2,1)\oplus u(1)$ относительно канонической скобки Пуассона $\{A,B\} = \frac{\partial A}{\partial x^{\mu}} \frac{\partial B}{\partial p_{\mu}} - \frac{\partial A}{\partial x^{\mu}} \frac{\partial B}{\partial x^{\mu}} - \frac{\partial A}{\partial x$

$$\{H, D\} = H, \quad \{H, K\} = 2D, \quad \{D, K\} = K.$$
 (2.28)

Скобка Пуассона P со всеми остальными интегралами движения равна нулю.

Вычисления, аналогичные проведенным ранее, показывают, что тензору Киллинга (1.25) отвечает сохраняющаяся величина

$$L = \Gamma m^2 + \frac{p_{\theta}^2}{\alpha} + \frac{\Gamma}{\gamma} (p_{\varphi} + ef)^2, \qquad (2.29)$$

квадратичная по импульсам.

Однако *L* не является независимым от остальных величин. Вычисляя элемент Казимира алгебры *so*(2, 1), находим

$$\mathcal{C} = HK - D^2 = L - k^2 P^2. \tag{2.30}$$

Выражая теперь *L* из (2.30) и переходя обратно к лагранжеву описанию, получаем явное выражение тензора Киллинга через векторы Киллинга:

$$L = \left(\frac{1}{2}H_{(i}K_{j)} - D_{i}D_{j} + P_{i}P_{j}\right)dx^{i}dx^{j}.$$
(2.31)

Таким образом, вблизи горизонта событий экстремальной черной дыры Керра– Ньюмана–АдС тензор Киллинга является приводимым (в терминологии [76]). Как было показано выше, подобная приводомость имеет место вблизи горизонта и для экстремальной черной дыры Керра [59], а также экстремальной черной дыры Керра–Ньюмана–НУТ–АдС [95] и слабо заряженной экстремальной черной дыры Керра [96].

Имеющихся интегралов движения достаточно для полного интегрирования уравнений движения пробной частицы, которое можно провести по аналогии со случаем экстремальной черной дыры Керра, рассмотренной в предыдущем разделе. Динамика радиальной пары (r, p_r) фиксируется при помощи H и D. $p_{\varphi} = P$ сам по себе является интегралом движения, в то время как p_{θ} выражается алгебраически через прочие динамические переменные при помощи L. Что касается оставшихся уравнений движения для θ и φ , то их можно проинтегрировать в квадратурах.

2.3 Сферическая механика

Понятие сферической механики было введено в работе [63], как угловой сектор конформной механики общего вида. Конформная механика описывается набором трех величин $H, D = tH + D_0, K = t^2 + 2tD_0 + K_0$, где $D_0 = D|_{t=0}, K_0 = K|_{t=0}$ и t – временная переменная, которые подчиняются структурным соотношениям алгебры Ли so(2,1):

$$\{H, D\} = H, \quad \{H, K\} = 2D, \quad \{D, K\} = K.$$
 (2.32)

В этом формализме H рассматривается как гамильтониан, а D и K являются сохраняющимися величинами, отвечающим дилатациям и специальным конформным преобразованиям. Стоит отметить, что H, D_0 и K_0 сами также подчиняются структурным соотношениям алгебры so(2,1). Этот факт позволяет отделить радиальную пару канонических переменных (r, p_r) от угловых переменных. Вводя новые канонические переменные:

$$R = \sqrt{2K_0}, \quad p_R = -\frac{2D_0}{2K_0} \quad \Rightarrow \quad \{R, p_R\} = 1,$$
 (2.33)

имеем новый гамильтониан:

$$H = \frac{1}{2}p_R^2 + \frac{2\mathcal{C}}{R^2},$$
 (2.34)

где C – оператор Казимира алгебры so(2,1):

$$\mathcal{C} = HK - D^2 = HK_0 - D_0^2. \tag{2.35}$$

В общем случае, *С* является величиной квадратичной по импульсам, канонически сопряженным угловым переменным, и его можно рассматривать как гамильтониан самостоятельной (редуцированной) механической системы, названной в [63] сферической механикой.

Для широкого класса экстремальных черных дыр вблизи горизонта событий интегралы движения для уравнений геодезических имеют следующую структуру:

$$H = r \left(\sqrt{(rp_r)^2 + L(\mu, p_\mu, p_\varphi)} - f(p_\varphi) \right), \quad D_0 = rp_r, \\ K_0 = \frac{1}{r} \left(\sqrt{(rp_r)^2 + L(\mu, p_\mu, p_\varphi)} - f(p_\varphi) \right).$$
(2.36)

В приведенных выражениях функция $L(\mu, p_{\mu}, p_{\varphi})$ – полином не более чем второго порядка по импульсам p_{μ_i} и p_{φ_i} (которые являются канонически сопряженными угловым переменным μ_i и φ_i , соответственно), а $f(p_{\varphi_i})$ – линейна по своим аргументам. Точный вид функций $L(\mu, p_{\mu}, p_{\varphi})$ и $f(p_{\varphi_i})$ зависит от рассматриваемого фона. Однако, из (2.35) можно определить вид оператора Казимира:

$$C = L(\mu, p_{\mu}, p_{\varphi}) - f(p_{\varphi_i})^2.$$
(2.37)

Стоит заметить, что для черных дыр Керра и Керра–Ньюмана–АдС функция $L(\mu, p_{\mu}, p_{\varphi})$ оказывается связаной с тензором Киллинга второго ранга (см. (2.29)).

Однако, новые радиальные переменные (R, p_R) не коммутируют с угловыми переменными $\eta^a = (\mu_i, \varphi_i)$ и канонически сопряженными им импульсами $p_a = (p_{\mu_i}, p_{\varphi_i})$. Как было показано в работе [67], для того, чтобы построить новый набор канонических переменных, включающий как радиальные, так и угловые переменные, нужно произвести каноническое преобразование $(r, p_r, \eta^a, p_a) \rightarrow (R, p_R, \tilde{\eta}^a, \tilde{p}_a)$, которое состоит из преобразований (2.33) для радиальной части и преобразований

$$\tilde{\eta}^a = \eta^a + \frac{\partial U}{\partial p_a}, \quad \tilde{p}_a = p_a - \frac{\partial U}{\partial \eta^a},$$
(2.38)

где

$$U(rp_r, \eta^a, p_a) = \frac{1}{2} \int_{x=rp_r} dx \log\left(\sqrt{\frac{x^2}{4} + L(\eta^a, p_a)} + f(p_a)\right),$$

для угловой части. В результате таких преобразований $(R, \tilde{\eta}^a)$ и (p_R, \tilde{p}_a) составляют пары канонически сопряженных фазовых переменных. В отличие от канонических преобразований, предложенных в [88], данные преобразования не требуют формулировки через переменные действие-угол.

Таким образом, применяя подходящие канонические преобразования, можно привести модель релятивистской массивной частицы, движущейся вблизи горизонта событий экстремальной черной дыры, к стандартной конформной механике. Вся важная информация о системе, которая была изначально определена в D измерениях, содержится в полученной из нее (D-2)-мерной редуцированной сферической механике.

2.4 Конформная механика, ассоциированная с геометрией экстремальной черной дыры Майерса– Перри в D = 2n + 1

Прежде чем приступить к построению конформной механики, отвечающей черной дыре Майерса–Перри, найдем часть обратной метрики Майерса–Перри, отвечающую координатам μ_i и обозначенную многоточием в формуле (1.67). Для нечетномерного случая она с точностью до множителя эквивалентна обратной метрике на сфере S^n . Метрика на *n*-мерной сфере S^n имеет вид:

$$d\sigma^2 = \sum_{i=1}^n d\mu_i^2.$$
 (2.39)

Так как сферические координаты μ_i подчиняются связи

$$\sum_{i=1}^{n} \mu_i^2 = 1, \tag{2.40}$$

то, дифференцируя ее, получаем

$$\sum_{i=1}^{n} \mu_i d\mu_i = 0, \qquad (2.41)$$

откуда выражем μ_n через прочие координаты:

$$d\mu_n = -\frac{\sum_{i=1}^{n-1} \mu_i d\mu_i}{\sqrt{1 - \sum_{i=1}^{n-1} \mu_i^2}},$$
(2.42)

и следовательно,

$$d\sigma^2 = \sum_{i,j=1}^{n-1} \underbrace{\left(\delta_{ij} + \frac{\mu_i \mu_j}{\mu_n^2}\right)}_{A_{ij}} d\mu_i d\mu_j.$$
(2.43)

Для нахождения обратной метрики нам необходимо из уравнения 2

$$A_{ij}B_{jk} = \delta_{ik}.\tag{2.44}$$

²Подразумевается суммирование по повторяющимся латинским индексам.

найти B_{jk} . Обозначим

$$B_{jk} = \delta_{jk} + \beta_{jk} \tag{2.45}$$

и сделаем подстановку

$$\beta_{jk} = \alpha \mu_j \mu_k. \tag{2.46}$$

Тогда уравнение (2.44) легко решается и дает:

$$B_{jk} = \delta_{jk} - \mu_k \mu_k. \tag{2.47}$$

Для того, чтобы построить гамильтониан релятивистской массивной частицы, которая движется вблизи горизонта событий экстремальной черной дыры Майерса– Перри в D = 2n + 1, разрешим условие массовой оболочки

$$g^{\mu\nu}p_{\mu}p_{\nu} = m^2 \tag{2.48}$$

относительно p_t , где $g^{\mu\nu}$ – обратная метрика. Последнюю несложно получить обращением координатных преобразований (1.51), (1.53):

$$\partial_t \to \frac{\varepsilon}{\alpha} \partial_t - \frac{\beta}{\alpha} \sum_{i=1}^n \partial_{\varphi_i}, \quad \partial_r \to \frac{1}{\varepsilon r_0} \partial_r, \quad \partial_{\varphi_i} \to \partial_{\varphi_i},$$
 (2.49)

$$\partial_{\varphi_i} \to \frac{r_0^2 + a^2}{ar_0} \partial_{\varphi_i}.$$
 (2.50)

Применение их к (1.44) в пределе $\varepsilon \to 0$ дает:

$$g^{\mu\nu}\partial_{\mu}\partial_{\nu} = \frac{1}{r^{2}}\partial_{t}^{2} - r^{2}\partial_{r}^{2} - \frac{2}{r}\sum_{i=1}^{n}\partial_{t}\partial_{\varphi_{i}} + \frac{1}{2n(n-1)}\sum_{i,j=1}^{n}(\mu_{i}\mu_{j} - \delta^{ij})\partial_{\mu_{i}}\partial_{\mu_{j}} + \sum_{i,j=1}^{n}\left(\frac{n+1}{2} - \frac{n}{2}\frac{\delta^{ij}}{\mu_{i}^{2}}\right)\partial_{\varphi_{i}}\partial_{\varphi_{j}}.$$
(2.51)

Так как сектор μ_i в (1.54) не имеет перекрестных слагаемых с другими координатами, его можно обратить отдельно.

Таким образом, нам требуется разрешить относительно p_t уравнение массовой оболочки, квадратичное по p_t :

$$m^{2} = \frac{1}{r^{2}}p_{t}^{2} - r^{2}p_{r}^{2} - \frac{2}{r}\sum_{i=1}^{n}p_{t}p_{\varphi_{i}} + \frac{1}{2n(n-1)}\sum_{i,j=1}^{n-1}(\mu_{i}\mu_{j} - \delta^{ij})p_{\mu_{i}}p_{\mu_{j}} + \sum_{i,j=1}^{n}\left(\frac{n+1}{2} - \frac{n}{2}\frac{\delta^{ij}}{\mu_{i}^{2}}\right)p_{\varphi_{i}}p_{\varphi_{j}}.$$

$$(2.52)$$

В итоге имеем:

$$H = r\left(\sqrt{\Omega} - \sum_{i=1}^{n} p_{\varphi_i}\right),\tag{2.53}$$

где

$$\Omega = m^{2} + (rp_{r})^{2} + \left(\sum_{i=1}^{n} p_{\varphi_{i}}\right)^{2} + \frac{1}{2n(n-1)} \sum_{i,j=1}^{n-1} (\mu_{i}\mu_{j} - \delta^{ij})p_{\mu_{i}}p_{\mu_{j}} - \sum_{i,j=1}^{n} \left(\frac{n+1}{2} - \frac{n}{2}\frac{\delta^{ij}}{\mu_{i}^{2}}\right)p_{\varphi_{i}}p_{\varphi_{j}}.$$
(2.54)

У метрики (1.54) имеются симметрии, порожденные векторными полями Киллинга

$$H = \partial_t, \quad D = t \,\partial_t - r \,\partial_r, \quad K = \left(t^2 + \frac{1}{r^2}\right)\partial_t - 2tr \,\partial_r, \tag{2.55}$$

отвечающими трансляции времени, дилатации и специальному конформному преобразованию, и n^2 векторами, генерирующими U(n)-симметрию. Векторы (2.55) образуют алгебру Ли so(2, 1) и дают интегралы движения:

$$H = r\left(\sqrt{\Omega} - \sum_{i=1}^{n} p_{\varphi_i}\right), \quad D = tH + rp_r,$$

$$K = t^2H + 2trp_r + \frac{1}{r}\left(\sqrt{\Omega} + \sum_{i=1}^{n} p_{\varphi_i}\right).$$
(2.56)

Для того, чтобы отделить угловой сектор модели от радиального, нам необходимо построить оператор Казимира конформной алгебры *so*(2, 1) [63, 64]. Простое вычисление дает:

$$\mathcal{C} = HK - D^{2} + (\sum_{i=1}^{n} p_{\varphi_{i}})^{2}
= m^{2} + \frac{1}{2n(n-1)} \sum_{i,j=1}^{n-1} (\delta_{ij} - \mu_{i}\mu_{j}) p_{\mu_{i}} p_{\mu_{j}} + \sum_{i,j=1}^{n} \left(\frac{n}{2} \frac{\delta_{ij}}{\mu_{i}^{2}} - \frac{n+1}{2}\right) p_{\varphi_{i}} p_{\varphi_{j}}$$
(2.57)

Этот оператор Казимира, в свою очередь, позволяет определить редуцированную сферическую механику с гамильтонианом (2.57). Так как гамильтониан (2.53) не зависит от азимутальных углов, φ_i , импульсы p_{φ_i} сохраняются во времени. Полагая азимутальные углы p_{φ_i} постоянными:

$$p_{\varphi_i} \to \gamma_i$$
 (2.58)

приходим к дальнейшей редукции [67]:

$$\tilde{H} = \frac{1}{2n(n-1)} \sum_{i,j=1}^{n-1} (\delta_{ij} - \mu_i \mu_j) p_{\mu_i} p_{\mu_j} + \sum_{i=1}^n \frac{\gamma_i^2}{\mu_i^2}, \qquad (2.59)$$

где γ_i – константы связи. Данный гамильтониан описывает частицу на S^{n-1} , двигающуюся во внешнем поле. Обсуждение суперинтегрируемости такой модели приведено ниже.

2.5 Конформная механика, ассоциированная с геометрией экстремальной черной дыры Майерса– Перри в D = 2n

В этом разделе мы будем обсуждать построение конформной механики, отвечающей черной дыре Майерса–Перри в четномерном случае. Как и в предыдущем разделе, сначала нам необходимо будет обратить метрику сферического сектора μ_i . Чтобы найти в четномерном случае обратную метрику к сферическому сектору (см. 1.62)

$$d\sigma^{2} = 2(n-1)\sum_{i=1}^{n-1} d\mu_{i}^{2} + d\mu_{n}^{2} = \sum_{i,j=1}^{n-1} (\underbrace{2(n-1)\delta_{ij} + \frac{\mu_{i}\mu_{j}}{\mu_{n}^{2}}}_{A_{ij}})d\mu_{i}d\mu_{j}$$
(A.10)

снова решаем уравнение (2.44), но на этот раз с подстановкой

$$B_{jk} = \alpha \delta_{jk} + \beta \mu_j \mu_k \tag{2.60}$$

и получаем³:

$$B_{jk} = \frac{\delta_{jk}}{2n-2} - \frac{\mu_j \mu_k}{(2n-2)(2n-3)\left(\frac{2n-2}{2n-3} - \sum \mu_i^2\right)} = \frac{1}{(2n-2)(2n-3)}((2n-3)\rho_0^2\delta_{jk} - \mu_j \mu_k).$$
(2.61)

³Все суммирования в этом разделе проводятся от 1 до n-1

Метрику, обратную к (1.62), построим, обращая преобразования (1.60) и применяя их к (1.44):

$$g^{\mu\nu}\partial_{\mu}\partial_{\nu} = \frac{1}{\rho_{0}^{2}} \left(\frac{1}{r^{2}}\partial_{t}^{2} - r^{2}\partial_{r}^{2}\right) - \frac{2}{r\rho_{0}^{2}} \sum \partial_{t}\partial_{\varphi_{i}} - \frac{1}{2(2n-3)(n-1)} \sum ((2n-3)\rho_{0}^{2}\delta_{ij} - \mu_{i}\mu_{j})\partial_{\mu_{i}}\partial_{\mu_{j}} + \sum \left(\frac{1}{\rho_{0}^{2}} + \frac{(2n-3)^{2}}{4} - \frac{(2n-3)(n-1)}{2}\frac{\delta^{ij}}{\mu_{i}^{2}}\right)\partial_{\varphi_{i}}\partial_{\varphi_{j}},$$
(2.62)

где также была использована формула (2.61).

Чтобы найти гамильтониан, решаем уравнение массовой оболочки:

$$m^{2} = \frac{1}{\rho_{0}^{2}} \left(\frac{1}{r^{2}} p_{t}^{2} - r^{2} p_{r}^{2} \right) - \frac{2}{r \rho_{0}^{2}} \sum p_{t} p_{\varphi_{i}} - \frac{1}{2(2n-3)(n-1)} \sum \left((2n-3)\rho_{0}^{2} \delta_{ij} - \mu_{i} \mu_{j} \right) p_{\mu_{i}} p_{\mu_{j}} + \sum \left(\frac{1}{\rho_{0}^{2}} + \frac{(2n-3)^{2}}{4} - \frac{(2n-3)(n-1)}{2} \frac{\delta^{ij}}{\mu_{i}^{2}} \right) p_{\varphi_{i}} p_{\varphi_{j}}.$$

$$(2.63)$$

откуда находим:

$$H = r \left(\sqrt{\Omega} - \sum p_{\varphi_i}\right),\tag{2.64}$$

где обозначено:

$$\Omega = m^{2}\rho_{0}^{2} + (rp_{r})^{2} - \frac{\sum(\mu_{i}\mu_{j} - (2n-3)\rho_{0}^{2}\delta_{ij})p_{\mu_{i}}p_{\mu_{j}}}{(2n-2)(2n-3)} - \sum\left(1 + \frac{(2n-3)^{2}\rho_{0}^{2}}{4} - \frac{(n-1)(2n-3)\rho_{0}^{2}}{2}\frac{\delta_{ij}}{\mu_{i}^{2}}\right)p_{\varphi_{i}}p_{\varphi_{j}}.$$
(2.65)

У метрики (1.62) имеются те же конформные симметрии (2.55) и, следовательно, у модели с гамильтонианом (2.64) имеются интегралы движения (2.56). Кроме того, присутствуют дополнительные интегралы движения, образующие алгебру Ли u(n-1). Вычисляя оператор Казимира конформной алгебры so(2,1), получаем гамильтониан интегрируемой сферической механики:

$$\mathcal{C} = m^{2}\rho_{0}^{2} - \frac{\sum(\mu_{i}\mu_{j} - (2n-3)\rho_{0}^{2}\delta_{ij})p_{\mu_{i}}p_{\mu_{j}}}{(2n-2)(2n-3)} - \sum\left(1 + \frac{(2n-3)^{2}\rho_{0}^{2}}{4} - \frac{(n-1)(2n-3)\rho_{0}^{2}}{2}\frac{\delta_{ij}}{\mu_{i}^{2}}\right)p_{\varphi_{i}}p_{\varphi_{j}}.$$
(2.66)

Если мы теперь положим здесь азимутальные импульсы постоянными, то получим гамильтониан редуцированной сферической механики в четных измерениях [67]:

$$\tilde{H} = \gamma_n \sum_{i=1}^{n-1} \mu_i^2 + \rho_0^2 \sum_{i=1}^{n-1} \frac{\gamma_i^2}{\mu_i^2} - \frac{1}{(2n-2)(2n-3)} \sum_{i,j=1}^{n-1} (\mu_i \mu_j - (2n-3)\rho_0^2 \delta_{ij}) p_{\mu_i} p_{\mu_j}.$$
 (2.67)

Обсуждение суперинтегрируемости такой модели приведено ниже в Разделе 2.8.

2.6 Конформная механика, ассоциированная с геометрией экстремальной черной дыры Майерса– Перри–АдС в D = 2n + 1

Как и ранее, для построения гамильтоновой механики будем разрешать условие массовой оболочки (2.48)

$$g^{\mu\nu}p_{\mu}p_{\nu} = m^2 \tag{2.68}$$

относительно p_t . $g^{\mu\nu}$ – обратная метрика, которая может быть получена обращением координатных преобразований (1.75), (1.77):

$$\partial_t \to \frac{\varepsilon}{\alpha} \partial_t - \frac{\beta}{\alpha} \sum_{i=1}^n \partial_{\varphi_i}, \quad \partial_r \to \frac{1}{\varepsilon r_0} \partial_r, \quad \partial_{\varphi_i} \to \partial_{\varphi_i},$$
 (2.69)

$$\partial_{\varphi_i} \to \frac{(r_0^2 + a^2)(n(1 - 2\varkappa) - 1)}{ar_0(1 + \lambda a^2)} \partial_{\varphi_i} \tag{2.70}$$

применением их к (1.67) и последующим переходом к пределу $\varepsilon \to 0$:

$$g^{\mu\nu}\partial_{\mu}\partial_{\nu} = \frac{\partial_{t}^{2}}{r^{2}} - r^{2}\partial_{r}^{2} + \frac{r_{0}^{2}(1+\lambda a^{2})}{2(r_{0}^{2}+a^{2})(n(1-2\varkappa)-1)}\sum_{i,j=1}^{n-1}(\mu_{i}\mu_{j}-\delta_{ij})\partial_{\mu_{i}}\partial_{\mu_{j}} + \\ + \sum_{i,j=1}^{n}\left(\frac{(1-\varkappa)(n(1-2\varkappa)-1)}{2(1+\lambda a^{2})} + 1 - \frac{(r_{0}^{2}+a^{2})(n(1-2\varkappa)-1)}{2a^{2}(1+\lambda a^{2})}\frac{\delta_{ij}}{\mu_{i}^{2}}\right)\partial_{\varphi_{i}}\partial_{\varphi_{j}} \quad (2.71) \\ - \frac{2}{r}\sum_{i=1}^{n}\partial_{t}\partial_{\varphi_{i}}.$$

Здесь для простоты был отброшен постоянный множитель $\frac{2(n(1-2\varkappa)-1)}{r_0^2}$. Так как сектор μ_i в (1.78) не имеет перекрестных слагаемых с другими координатами, его можно обратить отдельно.

Выбирая подходящее решение уравнения

$$m^{2} = \frac{\partial_{t}^{2}}{r^{2}} - r^{2}\partial_{r}^{2} + \frac{r_{0}^{2}(1+\lambda a^{2})}{2(r_{0}^{2}+a^{2})(n(1-2\varkappa)-1)} \sum_{i,j=1}^{n-1} (\mu_{i}\mu_{j}-\delta_{ij})\partial_{\mu_{i}}\partial_{\mu_{j}} + \\ + \sum_{i,j=1}^{n} \left(\frac{(1-\varkappa)(n(1-2\varkappa)-1)}{2(1+\lambda a^{2})} + 1 - \frac{(r_{0}^{2}+a^{2})(n(1-2\varkappa)-1)}{2a^{2}(1+\lambda a^{2})}\frac{\delta_{ij}}{\mu_{i}^{2}}\right)\partial_{\varphi_{i}}\partial_{\varphi_{j}} \quad (2.72) \\ - \frac{2}{r}\sum_{i=1}^{n} \partial_{t}\partial_{\varphi_{i}}$$

квадратичного по $p_t,$ мы получаем следующее выражение для гамильтониана:

$$H = r\left(\sqrt{\Omega} - \sum_{i=1}^{n} p_{\varphi_i}\right),\tag{2.73}$$

где введены обозначения:

$$\Omega = m^{2} + (rp_{r})^{2} + \left(\sum_{i=1}^{n} p_{\varphi_{i}}\right)^{2} - \eta \sum_{i,j=1}^{n-1} (\mu_{i}\mu_{j} - \delta_{ij})p_{\mu_{i}}p_{\mu_{j}} - \sum_{i,j=1}^{n} \left(\sigma - \tau \frac{\delta_{ij}}{\mu_{i}^{2}} + 1\right) p_{\varphi_{i}}p_{\varphi_{j}},$$

$$\eta = \frac{r_{0}^{2}(1 + \lambda a^{2})}{2(r_{0}^{2} + a^{2})(n(1 - 2\varkappa) - 1)}, \quad \sigma = \frac{(1 - \varkappa)(n(1 - 2\varkappa) - 1)}{2(1 + \lambda a^{2})},$$

$$\tau = \frac{(r_{0}^{2} + a^{2})(n(1 - 2\varkappa) - 1)}{2a^{2}(1 + \lambda a^{2})}.$$
(2.74)

У метрики (1.78) имеются симметрии, порожденные векторными полями Киллинга

$$H = \partial_t, \quad D = t \,\partial_t - r \,\partial_r, \quad K = \left(t^2 + \frac{1}{r^2}\right)\partial_t - 2tr \,\partial_r, \tag{2.75}$$

отвечающими трансляции времени, дилатации и специальному конформному преобразованию, которые образуют алгебру *so*(2, 1) и дают интегралы движения:

$$H = r\left(\sqrt{\Omega} - \sum_{i=1}^{n} p_{\varphi_i}\right), \quad D = tH + rp_r,$$

$$K = t^2H + 2trp_r + \frac{1}{r}\left(\sqrt{\Omega} + \sum_{i=1}^{n} p_{\varphi_i}\right).$$
(2.76)

Оператор Казимира алгебры so(2,1)

$$\mathcal{C} = HK - D^{2} + (\sum_{i=1}^{n} p_{\varphi_{i}})^{2}$$

= $m^{2} + \eta \sum_{i,j=1}^{n-1} (\delta_{ij} - \mu_{i}\mu_{j}) p_{\mu_{i}} p_{\mu_{j}} + \sum_{i,j=1}^{n} \left(\tau \frac{\delta_{ij}}{\mu_{i}^{2}} - \sigma\right) p_{\varphi_{i}} p_{\varphi_{j}}$ (2.77)

позволяет построить интегрируемую сферическую механику. Сравнивая это выражение с полученным ранее для случая нулевой космологической постоянной [67], мы видим, что оно представляет собой его однопараметрическое расширение, поскольку постоянные множители (2.74) теперь зависят от параметра – космологической постоянной λ.

2.7 Конформная механика, ассоциированная с геометрией экстремальной черной дыры Майерса– Перри–АдС в D = 2n

Как и в предыдущем разделе, построим гамильтониан, разрешая условие массовой оболочки (2.48). Сперва обратим координатные преобразования (1.87), (1.89):

$$\partial_t \to \frac{\varepsilon}{\alpha} \partial_t - \frac{\beta}{\alpha} \sum_{i=1}^{n-1} \partial_{\varphi_i}, \quad \partial_r \to \frac{1}{\varepsilon r_0} \partial_r, \quad \partial_{\varphi_i} \to \partial_{\varphi_i},$$
(2.78)

$$\partial_{\varphi_i} \to \frac{V}{2ar_0} \frac{r_0^2 + a^2}{1 + \lambda a^2} \partial_{\varphi_i}, \qquad (2.79)$$

и применим их к (1.67). После перехода к пределу $\varepsilon \to 0$, получаем обратную метрику:

$$g^{\mu\nu}\partial_{\mu}\partial_{\nu} = \frac{V}{\rho_0^2} \left(\frac{\partial_t^2}{r^2} - r^2 \partial_r^2\right) - \frac{1 + \lambda a^2}{(r_0^2 + a^2)\sin^2\theta} \sum_{i,j=1}^{n-2} (\delta_{ij} - \nu_i \nu_j)\partial_{\nu_i}\partial_{\nu_j} - \frac{\Delta_\theta}{\rho_0^2}\partial_\theta^2 - \sum_{i,j=1}^{n-1} \left(\frac{V^2(r_0^2 + a^2)}{4a^2r_0^2(1 + \lambda a^2)} \frac{\delta_{ij}}{\mu_i^2} - \frac{V^2(r_0^2 + a^2)}{2\Delta_\theta r_0^2(a^2 + (2n-1)r_0^2)(1 + \lambda a^2)} - \frac{V}{\rho_0^2}\right)\partial_{\varphi_i}\partial_{\varphi_j} \quad (2.80)$$
$$-2\frac{V}{\rho_0^2}r \sum_{i=1}^{n-1} \partial_t \partial_{\varphi_i}.$$

Используя (2.80), получаем гамильтониан вида:

$$H = r \left(\sqrt{\Omega} - \sum_{i=1}^{n-1} p_{\varphi_i} \right),$$

$$\Omega = \left(\sum_{i=1}^{n-1} p_{\varphi_i} \right)^2 + \frac{m^2 \rho_0^2}{V} + (rp_r)^2 + \frac{1 + \lambda a^2}{V(r_0^2 + a^2)} \frac{\rho_0^2}{\sin^2 \theta} \sum_{i,j=1}^{n-2} (\delta_{ij} - \nu_i \nu_j) p_{\nu_i} p_{\nu_j}$$

$$+ \sum_{i,j=1}^{n-1} \left(\frac{V(r_0^2 + a^2) \rho_0^2}{4a^2 r_0^2 (1 + \lambda a^2)} \frac{\delta^{ij}}{\mu_i^2} - \frac{V(r_0^2 + a^2)}{2r_0^2 (a^2 + (2n-1)r_0^2)(1 + \lambda a^2)} \frac{\rho_0^2}{\Delta_{\theta}} - 1 \right) p_{\varphi_i} p_{\varphi_j}$$

$$+ \frac{\Delta_{\theta}}{V} p_{\theta}^2.$$
(2.81)

Этот гамильтониан обладает конформной симметрией, порожденной векторами Киллинга (2.75), и симметрией, порожденной $(n-1)^2$ векторами, которые вместе образуют алгебру $so(2,1) \oplus u(n-1)$. Конформные симметрии приводят к интегралам движения:

$$H = r\left(\sqrt{\Omega} - \sum_{i=1}^{n-1} p_{\varphi_i}\right), \quad D = tH + rp_r,$$

$$K = t^2H + 2trp_r + \frac{1}{r}\left(\sqrt{\Omega} + \sum_{i=1}^{n-1} p_{\varphi_i}\right).$$
(2.82)

Оператор Казимира *so*(2, 1) приводит к редуцированной сферической механике с гамильтонианом вида:

$$\mathcal{C} = HK - D^{2} + (\sum_{i=1}^{n-1} p_{\varphi_{i}})^{2} = \frac{m^{2}\rho_{0}^{2}}{V} + \eta \frac{\rho_{0}^{2}}{\sin^{2}\theta} \sum_{i,j=1}^{n-2} (\delta_{ij} - \nu_{i}\nu_{j})p_{\nu_{i}}p_{\nu_{j}} + \frac{\Delta_{\theta}}{V}p_{\theta}^{2} + \sum_{i,j=1}^{n-1} \left(\tau \frac{\delta^{ij}\rho_{0}^{2}}{\mu_{i}^{2}} - \sigma \frac{\rho_{0}^{2}}{\Delta_{\theta}} - 1\right) p_{\varphi_{i}}p_{\varphi_{j}},$$
(2.83)

где обзначено:

$$\tau = \frac{V(r_0^2 + a^2)}{4a^2 r_0^2 (1 + \lambda a^2)}, \quad \sigma = \frac{V(r_0^2 + a^2)}{2r_0^2 (a^2 + (2n - 1)r_0^2)(1 + \lambda a^2)},$$

$$\eta := \frac{1 + \lambda a^2}{V(r_0^2 + a^2)}.$$
(2.84)

Этот гамильтониан дает однопараметрическую деформацию модели, построенной в работе [67], за счет зависимости от космологической постоянной λ .

Полагая азимутальные импульсы p_{φ_i} постоянными, приходим к дальнейшей редукции:

$$\tilde{H} = \frac{\rho_0^2}{\sin^2 \theta} \left(\eta \sum_{i,j=1}^{n-2} (\delta_{ij} - \nu_i \nu_j) p_{\nu_i} p_{\nu_j} + \sum_{i,j=1}^{n-1} \tau \frac{\gamma_i^2}{\nu_i^2} \right) + \frac{m^2 \rho_0^2}{V} + \frac{\Delta_\theta}{V} p_\theta^2 - \sigma \frac{\rho_0^2}{\Delta_\theta} \sum_{i,j=1}^{n-1} \gamma_i \gamma_j$$
(2.85)

где γ_i - константы связи. Переопределяя константы связи, приводим гамильтониан к виду

$$\tilde{H} = \frac{m^2 \rho_0^2}{V} + \frac{\Delta_\theta}{V} p_\theta^2 - \sigma' \frac{\rho_0^2}{\Delta_\theta} + \eta' \frac{\rho_0^2}{\sin^2 \theta} \left(\sum_{i,j=1}^{n-2} (\delta_{ij} - \nu_i \nu_j) p_{\nu_i} p_{\nu_j} + \sum_{i,j=1}^{n-1} \frac{\gamma_i^2}{\nu_i^2} \right), \quad (2.86)$$

где буквы со штрихами обозначают переопределнные константы связи. Мы замечаем сходство между теориями с нулевым и ненулевым космологическим членом, однако потенциал взаимодействия в (2.86) содержит дополнительные слагаемые, по сравнению с (2.67) и, таким образом, описывает нетривиальную деформацию системы (2.67).

2.8 Унитарная симметрия и интегрируемость сферической механики

2.8.1 Максимальная суперинтегрируемость редуцированной сферической механики

Перейдем теперь к обсуждению суперинтегрируемости описанных выше моделей. В произвольной размерности черная дыра может совершать вращения в разных ортогональных друг другу плоскостях. Для случая совпадающих параметров вращения имеется дополнительная симметрия, отвечающая переходу от одной из плоскостей вращения к другой. Векторные поля, генерирующие эти вращения, могут быть записаны в виде [81]:

$$\rho_{ij} = x_i \partial_{y_j} - y_j \partial_{x_i} + x_j \partial_{y_i} - y_i \partial_{x_j}, \quad \xi_{ij} = x_i \partial_{x_j} - x_j \partial_{x_i} + y_i \partial y_j - y_j \partial y_i, \quad (2.87)$$

где использована параметризация:

$$x_i = \mu_i \cos \varphi_i, \quad y_i = \mu_i \sin \varphi_i; \varphi_i = \arccos \frac{x_i}{\sqrt{x_i^2 + y_i^2}}, \quad \mu_i = \sqrt{x_i^2 + y_i^2}.$$
(2.88)

 $\frac{n(n+1)}{2}$ генераторов ρ_{ij} и $\frac{n(n-1)}{2}$ генераторов ξ_{ij} вместе образуют унитарную алгебру u(n). Основная идея приведенного ниже доказательства суперинтегрируемости редуцированной сферической механики заключается в том, что из интегралов движения, отвечающих u(n)-преобразованиям, выбираются те, которые коммутируют с импульсами p_{φ_i} , которые в силу характера редукции по циклическим переменным полагаются равными константам связи. Число таких интегралов движения оказывается достаточным для демонстрации (максимальной) суперинтегрируемости.

Существование вышеупомянутой симметрии можно доказать, вводя комплексные координаты

$$z_k = \mu_k e^{i\varphi_k} = x_k + iy_k \qquad z_k \,\overline{z}_k = \mu_i^2, \tag{2.89}$$

и вычисляя дифференциальные формы

$$z_k d\overline{z}_k = \mu_k d\mu_k - i\mu_i^2 d\varphi_k,$$

$$\overline{z}_k dz_k = \mu_i d\mu_i + i\mu_i^2 d\varphi_i,$$

$$dz_k dz_k = d\mu_i^2 + \mu_i^2 d\varphi_i^2.$$
(2.90)

Метрику (1.78) можно выразить через вещественные комбинации (2.90), и, следовательно, она будет инвариантной относительно унитарных преобразований

$$z'_{k} = U_{k}^{l} z_{l}, \quad U_{k}^{l} \epsilon U(n).$$
 (2.91)

Векторы Киллинга(2.87) можно выразить через μ_i, φ_i при помощи параметризации (2.88):

$$\rho_{ij} = \sin \varphi_{ij} (\mu_j \partial_{\mu_i} - \mu_i \partial_{\mu_j}) + \cos \varphi_{ij} \left(\frac{\mu_j}{\mu_i} \partial_{\varphi_i} + \frac{\mu_i}{\mu_j} \partial_{\varphi_j} \right),$$

$$\xi_{ij} = -\cos \varphi_{ij} (\mu_j \partial_{\mu_i} - \mu_i \partial_{\mu_j}) + \sin \varphi_{ij} \left(\frac{\mu_j}{\mu_i} \partial_{\varphi_i} + \frac{\mu_i}{\mu_j} \partial_{\varphi_j} \right),$$
(2.92)

где $i, j = 1, \ldots, n-1$ и мы обозначили $\varphi_{ij} = \varphi_i - \varphi_j$. Для i = j имеем

$$\rho_{ii} = 2\partial_{\varphi_i}.\tag{2.93}$$

Рассмотрим далее набор сферических координат, которые рекурсивно определим следующим образом:

$$\mu_i = \nu_i \sin \theta_{n-1} \ (i = 1, \dots, n-2), \quad \mu_n = \cos \theta_{n-1}, \quad \sum_{i=1}^{n-1} \nu_i^2 = 1,$$
 (2.94)

откуда находим:

$$\mu_{n} = \cos \theta_{n-1},$$

$$\mu_{n-1} = \sin \theta_{n-1} \cos \theta_{n-2},$$

$$\dots$$

$$\mu_{1} = \sin \theta_{n-1} \dots \sin \theta_{1};$$

$$\theta_{n-1} = \arccos \sqrt{x_{n}^{2} + y_{n}^{2}},$$

$$\theta_{k} = \arctan \sqrt{\frac{x_{1}^{2} + y_{1}^{2} + \dots + x_{k}^{2} + y_{k}^{2}}{x_{k+1}^{2} + y_{k+1}^{2}}} \quad (k = 1, \dots n - 2).$$
(2.95)

В этих координатах выражения для ρ_{kn}, ξ_{kn} принимают вид:

$$\rho_{kn} = \sin \varphi_{kn} \left(\frac{\mu_k}{\sin \theta_{n-1}} \partial_{\theta_{n-1}} - \frac{\mu_k \tan \theta_k \cos \theta_{n-1}}{\mu_1^2 + \dots + \mu_k^2} \partial_{\theta_k - 1} + \frac{\mu_k \cos \theta_{n-1}}{\tan \theta_k (\mu_1^2 + \dots + \mu_{k+1}^2)} \partial_{\theta_k} + \dots \right)$$

$$+ \frac{\mu_k \cos \theta_{n-1}}{\tan \theta_{n-1} \sin^2 \theta_{n-1}} \partial_{\theta_{n-2}} + \cos \varphi_{kn} \left(\frac{\cos \theta_{n-1}}{\mu_k} \partial_{\varphi_k} + \frac{\mu_k}{\cos \theta_{n-1}} \partial_{\varphi_n} \right),$$

$$\xi_{kn} = -\cos \varphi_{kn} \left(\frac{\mu_k}{\sin \theta_{n-1}} \partial_{\theta_{n-1}} - \frac{\mu_k \tan \theta_k \cos \theta_{n-1}}{\mu_1^2 + \dots + \mu_k^2} \partial_{\theta_{k-1}} + \frac{\mu_k \cos \theta_{n-1}}{\tan \theta_k (\mu_1^2 + \dots + \mu_{k+1}^2)} \partial_{\theta_k} + \dots \right)$$

$$+ \frac{\mu_k \cos \theta_{n-1}}{\tan \theta_{n-1} \sin^2 \theta_{n-1}} \partial_{\theta_{n-2}} + \sin \varphi_{kn} \left(\frac{\cos \theta_{n-1}}{\mu_k} \partial_{\varphi_k} + \frac{\mu_k}{\cos \theta_{n-1}} \partial_{\varphi_n} \right).$$
(2.96)

Выражения для i, j = 1, ..., n - 1 можно получить из (2.92), применяя координатные преобразования (2.95). При помощи этих формул можно построить всего n независимых операторов Казимира, отвечающих унитарным преобразованиям, порядков от 1 до n, используя известную формулу [99]

$$C_k = E_{i_1 i_2} E_{i_2 i_3} \dots E_{i_{k-1} i_k} E_{i_k i_1}, \qquad (2.97)$$

где подразумевается суммирование по повторяющимся индексам и обозначено:

$$E_{ij} = \frac{1}{2} (\xi_{ij} + \rho_{ij}). \tag{2.98}$$

Выше мы уже использовали (2.94) для рассмотрения четномерного случая. В нечетномерном случае гамильтониан полностью редуцированной системы имеет

вид [67]:

$$H = p_{\theta_n}^2 + \frac{\gamma_n^2}{\cos^2 \theta_n} + \frac{1}{\sin^2 \theta_n} \left(\sum_{i,j=1}^{n-2} (\delta_{ij} - \nu_i \nu_j) p_{\nu_i} p_{\nu_j} + \sum_{i,j=1}^{n-1} \frac{\gamma_i^2}{\nu_i^2} \right),$$
(2.99)

где предполагается, что ν_i параметризуют сферу единичного радиуса. Так как выражение в скобках – это гамильтониан аналогичной системы в n-2 измерениях, имеем рекуррентное соотношение:

$$H_n = p_{\theta_n}^2 + \frac{\gamma_n^2}{\cos^2 \theta_n} + \frac{H_{n-1}}{\sin^2 \theta_n}.$$
 (2.100)

Заметим, что H_i , i = 1, ..., n зависят от разных координат. Они функционально независимы и сохраняются во времени. В итоге, n интегралов движения $H_1, ..., H_n$ обеспечивают интегрируемость механики (2.99). Гамильтониан H_n также наследует все симметрии гамильтониана H_{n-1} .

Чтобы доказать максимальную суперинтегрируемость модели (2.99), необходимо предъявить 2(n-1) - 1 функционально независимых интегралов движения. Их можно получить из векторов Киллинга (2.92), (2.96) при помощи подстановки $\partial_{\theta_i} \to p_{\theta_i}, \, \partial_{\varphi_i} \to p_{\varphi_i}$, которая дает:

$$\rho_{ij} = \sin \varphi_{ij} (\mu_j \, p_{\mu_i} - \mu_i \, p_{\mu_j}) + \cos \varphi_{ij} \left(\frac{\mu_j}{\mu_i} p_{\varphi_i} + \frac{\mu_i}{\mu_j} p_{\varphi_j}\right),$$

$$\xi_{ij} = -\cos \varphi_{ij} (\mu_j \, p_{\mu_i} - \mu_i \, p_{\mu_j}) + \sin \varphi_{ij} \left(\frac{\mu_j}{\mu_i} p_{\varphi_i} + \frac{\mu_i}{\mu_j} p_{\varphi_j}\right),$$

$$\rho_{kn} = \sin \varphi_{kn} \left(\frac{\mu_k}{\sin \theta_{n-1}} p_{\theta_{n-1}} - \frac{\mu_k \tan \theta_k \cos \theta_{n-1}}{\mu_1^2 + \dots + \mu_k^2} p_{\theta_{k-1}} + \frac{\mu_k \cos \theta_{n-1}}{\tan \theta_k (\mu_1^2 + \dots + \mu_{k+1}^2)} p_{\theta_k} + \dots + \frac{\mu_k \cos \theta_{n-1}}{\tan \theta_{n-1} \sin^2 \theta_{n-1}} p_{\theta_{n-2}}\right) + \cos \varphi_{kn} \left(\frac{\cos \theta_{n-1}}{\mu_k} p_{\varphi_k} + \frac{\mu_k}{\cos \theta_{n-1}} p_{\varphi_n}\right),$$

$$\xi_{kn} = -\cos \varphi_{kn} \left(\frac{\mu_k}{\sin \theta_{n-1}} p_{\theta_{n-1}} - \frac{\mu_k \tan \theta_k \cos \theta_{n-1}}{\mu_1^2 + \dots + \mu_k^2} p_{\theta_k-1} + \frac{\mu_k \cos \theta_{n-1}}{\tan \theta_k (\mu_1^2 + \dots + \mu_{k+1}^2)} p_{\theta_k} + \dots + \frac{\mu_k \cos \theta_{n-1}}{\tan \theta_{n-1} \sin^2 \theta_{n-1}} p_{\theta_{n-1}}\right) + \sin \varphi_{kn} \left(\frac{\cos \theta_{n-1}}{\mu_k} p_{\varphi_k} + \frac{\mu_k}{\cos \theta_{n-2}} p_{\varphi_n}\right).$$
(2.101)

Для того, чтобы эти выражения были интегралами движения гамильтониана (2.99), они должны коммутировать с азимутальными импульсами p_{φ_i} , которые в силу характера редукции по циклическим переменным полагаются равными константам связи. Из (2.101) заключаем, что величины

$$I_{ij} = \rho_{ij}^2 + \xi_{ij}^2 \quad (i < j)$$
(2.102)

не зависят от φ_i и, следовательно, являются сохраняющимися величинами в модели (2.99) после того, как в ней проведем редукцию по циклическим перемнным $p_{\varphi_i} \to g_i$, где g_i -постоянные.

Максимальная суперинтегрируемость модели (2.99) для произвольного n может быть доказана по индукции с использованием соотношения (2.100). Для n = 2 имеется гамильтониан H_2 :

$$H_2 = p_{\theta_1}^2 + \frac{\gamma_1^2}{\sin^2 \theta_1} + \frac{\gamma_1^2}{\cos^2 \theta_1}.$$
 (2.103)

Для n = 3 находим:

$$I_{12} = p_{\theta_1}^2 + \frac{\gamma_1^2}{\sin^2 \theta_1} + \frac{\gamma_1^2}{\cos^2 \theta_1},$$

$$I_{13} = \left(p_{\theta_1} \frac{\cos \theta_1}{\tan \theta_2} + p_{\theta_2} \sin \theta_1 \right)^2 + \left(\gamma_1 \frac{\cot \theta_2}{\sin \theta_1} + \gamma_3 \frac{\sin \theta_1}{\tan \theta_2} \right)^2,$$

$$I_{23} = \left(p_{\theta_1} \frac{\sin \theta_1}{\tan \theta_2} - p_{\theta_2} \cos \theta_1 \right)^2 + \left(\gamma_2 \frac{\cot \theta_2}{\cos \theta_1} + \gamma_3 \frac{\cos \theta_1}{\cot \theta_2} \right)^2,$$

$$H_3 = p_{\theta_2}^2 + \frac{\gamma_3^2}{\cos^2 \theta_2} + \frac{1}{\sin^2 \theta_n} \left(p_{\theta_1}^2 + \frac{\gamma_1^2}{\sin^2 \theta_1} + \frac{\gamma_1^2}{\cos^2 \theta_1} \right).$$
(2.104)

Гамильтонинан H_3 является линейной комбинацией I_{ij} с точностью до аддитивной постоянной:

$$H_3 = I_{12} + I_{13} + I_{23} + \gamma_3^2 - 2\gamma_3(\gamma_1 + \gamma_2)$$
(2.105)

и, следовательно, имеется три функционально–независимых интеграла движения для системы с двумя степенями свободы, что означает максимальную суперинтегрируемость.

Используя соотношение (2.100), переходим от системы с n-2 степенями свободы к системе с n-1 степенями свободы. При этом имеется 2(n-2)-1 интеграла движения и добавляются еще два новых H_n и $I_{(n-1)n}$:

$$I_{(n-1)n} = \left(p_{\theta_{n-2}} \frac{\sin \theta_{n-2}}{\tan \theta_{n-1}} - p_{\theta_{n-1}} \cos \theta_{n-2}\right)^2 + \left(\gamma_{n-1} \frac{\cot \theta_{n-1}}{\cos \theta_{n-2}} + \gamma_n \frac{\cos \theta_{n-2}}{\cot \theta_{n-1}}\right)^2.$$
(2.106)

Полная система обладает 2(n-1) - 1 независимыми интегралами движения и, следовательно, является максимально суперинтегрируемой [67].

Для сферической механики, полученной из четномерной экстремальной черной дыры, мы имеем следующий гамильтониан (2.86):

$$H_{n} = \eta' \frac{\rho_{0}^{2}}{\sin^{2} \theta_{n-1}} \left(\sum_{i,j=1}^{n-2} (\delta_{ij} - \nu_{i}\nu_{j}) p_{\nu_{i}} p_{\nu_{j}} + \sum_{i,j=1}^{n-1} \frac{\gamma_{i}^{2}}{\nu_{i}^{2}} \right) + \frac{m^{2} \rho_{0}^{2}}{V} + \frac{\Delta_{\theta_{n-1}}}{V} p_{\theta_{n-1}}^{2} - \sigma' \frac{\rho_{0}^{2}}{\Delta_{\theta_{n-1}}}$$

$$(2.107)$$

Последний множитель в первой строке – это гамильтониан (2.86) частицы на S^{n-2} , обсуждавшийся выше. Так как ρ_0 и $\Delta_{\theta_{n-1}}$ зависят только от θ_{n-1} , этот гамильтониан дает 2(n-2) - 1 независимых сохраняющихся величин. Но поскольку имеется всего один дополнительный интеграл движения H_n , этой модели не достает одного интеграла движения, чтобы быть максимально суперинтегрируемой [67].

2.8.2 Суперинтегрируемость нередуцированной сферической механики

Обсудим теперь симметрии и вопрос суперинтегрируемости для построенной выше сферической механики в нередуцированном случае. Рассмотрим сначала нечетномерный случай, когда динамика задается гамильтонианом (2.77). По построению он наследует от гамильтониана (2.73) U(n)-симметрию. Соответствующие векторы Киллинга даются выражениями (2.87). В частности, можно проверить, что гамильтониан можно выразить через элементы Казимира алгебры u(n)первого и второго порядка:

$$C_1 = \frac{1}{2} \sum_{i=1}^n \rho_{ii}, \quad C_2 = \frac{1}{2} \sum_{i,j=1}^n (\rho_{ij}^2 + \xi_{ij}^2)$$
(2.108)

следующим образом:

$$H_n^{sph} = \mathcal{C}_2 - \mathcal{C}_1^2 = \sum_{i,j=1}^n (\delta_{ij} - \mu_i \mu_j) p_{\mu_i} p_{\mu_j} + \sum_{i=1}^n \frac{p_{\varphi_i}^2}{\mu_i^2}.$$
 (2.109)

Для дальнейшего удобства обратим преобразование (2.70) и отбросим возникающие постоянный множитель и аддитивную постоянную в (2.77), приводя гамильтониан к виду:

$$C \equiv H_n = \tau H_n^{sph} - \sigma \mathcal{C}_1^2 =$$

= $\tau \mathcal{C}_2 - (\sigma + \tau) \mathcal{C}_1^2.$ (2.110)

Из этой формулы видно, что алгебра u(n) является алгеброй генерирующей спектр системы. Это свойство особенно полезно в квантовом случае, поскольку существует хорошо разработанный математический аппарат теории групп для постороения собственных состояний и собственных значений квантованного гамильтониана (см., например, [99]).

Обсудим теперь вопрос суперинтегрируемости системы с гамильтонианом H_n , у которой имеется 2n - 1 степеней свободы. Обозначим за $\mathcal{C}_m(u(n))$ элемент Казимира алгебры u(n) порядка m. Всего имеется n элементов Казимира первого порядка

$$\mathcal{C}_1(u(1)), \dots, \mathcal{C}_1(u(n)), \tag{2.111}$$

которые вместе сn-1элементами Казимира второго порядка

$$C_2(u(2)), \dots, C_2(u(n))$$
 (2.112)

образуют набор 2n - 1 функционально-независимых интегралов движения в инволюции. Следовательно, данная динамическая система интегрируема по Лиувиллю. Вопрос суперинтегрируемости сводится к подсчету функционально-независимых интегралов движения среди n^2 генераторов ρ_{ij}, ξ_{ij} алгебры u(n).

Будем использовать координаты (x_i, y_i) (2.87), в которых ρ_{ij} и ξ_{ij} имеют вид:

$$\rho_{ij} = x_i p_{y_j} - y_j p_{x_i} + x_j p_{y_i} - y_i p_{x_j}, \quad \xi_{ij} = x_i p_{x_j} - x_j p_{x_i} + y_i p_{y_j} - y_j p_{y_i}. \quad (2.113)$$

Данные выражения дают каноническую реализацию u(n). В общем случае число функционально–независимых интегралов движения равно рангу матрицы $\partial_{\zeta_a} I_b$, где ζ_a обозначают координаты в фазовом пространстве, а I_b – генераторы. Случай n = 1 тривиален: имеется одна степень свободы в конфигурационном пространстве и один интеграл движения. При n = 2 имеется восемь координат ζ_a и четыре интеграла движения I_b . Можно проверить, что

$$rank(\partial_{\zeta_a} I_b) = 4, \tag{2.114}$$

откуда следует, что все I_b функционально–независимы. При n = 3 имется двенадцать координат в конфигурационном пространстве и девять интегралов движения. Однако, в этом случае

$$rank(\partial_{\zeta_a} I_b) = 8, \tag{2.115}$$

и следовательно, одна из сохраняющихся величин есть функция от остальных восьми. Оказывается, что соотношение между ними можно найти в явном виде:

$$\frac{1}{2} \left(\rho_{11}(\rho_{23}^2 + \xi_{23}^2) + \rho_{22}(\rho_{13}^2 + \xi_{13}^2) + \rho_{33}(\rho_{12}^2 + \xi_{12}^2) \right) =$$

= $\rho_{23}(\xi_{12}\xi_{13} + \rho_{12}\rho_{13}) + \xi_{23}(\rho_{12}\xi_{13} - \xi_{12}\rho_{13}).$ (2.116)

Стоит заметить, что это отношение третьего порядка по генераторам и оно не возникает в полностью редуцированном случае, поскольку его нельзя выразить только через величины $I_{ij} = \rho_{ij}^2 + \xi_{ij}^2, i < j$, (см. [67]).

Итак, мы видим, что при n = 2 и n = 3 число функционально-независимых интегралов движения равно 4n - 4. Это утверждение оказывается верным для всех $n \ge 2$, что можно доказать, используя метод математической индукции. Предположим, что для некоторого N = n - 1 имеется 4(n - 1) - 4 функционально независимых интеграла движения, которые можно выбрать следующим образом:

$$\rho_{11}, \ \rho_{12}, \ \xi_{12}, \ \rho_{22}, \ \rho_{1i}, \ \xi_{1i}, \ \rho_{2i}, \ \xi_{2i}, \tag{2.117}$$

где i = 3, ..., n-1. Тогда для N = n добавляем дополнительные 2n-1 интегралов движения ρ_{in} и ξ_{in} при i = 1, ..., n-1, а также ρ_{nn} . Для каждой пары интегралов движения ρ_{in} и ξ_{in} , где i = 3, ..., n-1, рассмотрим следующие столбцы в матрице $\partial_{\zeta_a} I_b$:

$$\frac{\partial_{\zeta_a} \{\rho_{11}, \rho_{1i}, \xi_{1i}, \rho_{ii}, \rho_{1n}, \xi_{1n}, \rho_{in}, \xi_{in}, \rho_{nn}\}}{\partial_{\zeta_a} \{\rho_2, \rho_{2i}, \xi_{2i}, \rho_{ii}, \rho_{2n}, \xi_{2n}, \rho_{in}, \xi_{in}, \rho_{nn}\}}$$
(2.118)

Эти стобцы имеют в точности такую же структуру, что и для n = 3, если произвести следующую подстановку индексов:

$$(123) \to (1in), (123) \to (2in).$$
 (2.119)
Следовательно, из них получаем аналогичные соотношения между генераторами, что и в (2.116):

$$\frac{1}{2} \left(\rho_{kk} \left(\rho_{in}^2 + \xi_{in}^2 \right) + \rho_{ii} \left(\rho_{kn}^2 + \xi_{kn}^2 \right) + \rho_{nn} \left(\rho_{ki}^2 + \xi_{ki}^2 \right) \right) = \rho_{in} \left(\xi_{ki} \xi_{kn} + \rho_{ki} \rho_{kn} \right) + \xi_{in} \left(\rho_{ki} \xi_{kn} - \xi_{ki} \rho_{kn} \right),$$
(2.120)

где k = 1, 2. Для того, чтобы выразить ρ_{nn} как функцию остальных генераторов, рассмотрим другой набор столбцов:

$$\partial_{\zeta_a} \{ \rho_{11}, \rho_{12}, \xi_{12}, \rho_{22}, \rho_{1n}, \xi_{1n}, \rho_{2n}, \xi_{2n}, \rho_{nn} \},$$
(2.121)

что приводит к тем же соотношениям, что и в (2.120) при k = 1, i = 2. В итоге заключаем, что генераторы $\rho_{1n}, \xi_{1n}, \rho_{2n}, \xi_{2n}$ являются функционально независимыми. Вместе с (2.117) они образуют набор 4n - 4 функционально-независимых интегралов движения, что завершает индукцию.

Из вышеприведенных рассуждений следует, что для D = 2n + 1 в сферической механике не хватает одного интеграла движения для максимальной суперинтегрируемости.

Анализ случая четного числа измерений D = 2n, когда гамильтониан имеет вид (2.83) можно провести аналогичным образом. После обращения преобразования (1.89), приводим гамильтониан к следующему виду:

$$C \equiv \tilde{H}_{n} = \frac{m^{2}\rho_{0}^{2}}{V} + \frac{\Delta_{\theta}}{V}p_{\theta}^{2} + \tau\rho_{0}^{2}H_{n-1}^{sph} - \frac{\sigma}{\Delta_{\theta}}\left(\sum_{i=1}^{n-1}p_{\varphi_{i}}\right)^{2},$$
 (2.122)

где

$$\tau = \frac{1 + \lambda a^2}{V(r_0^2 + a^2)}, \qquad \sigma = \frac{2a^2(1 + \lambda a^2)}{V(r_0^2 + a^2)(a^2 + (2n - 1)r_0^2)}, \tag{2.123}$$

и H_{n-1}^{sph} определен согласно формуле (2.109). У этой системы имеется всего 2n-2 конфигурационных степеней свободы, и ее интегрируемость по Лиувиллю обеспечивается наличием 2n-2 коммутирующих между собой независимых интегралов движения

$$H_2^{sph}, \dots, H_{n-1}^{sph}, p_{\varphi_1}, \dots, p_{\varphi_{n-1}}, \tilde{H}_n.$$
 (2.124)

Ее алгебра симметрий та же, что и у H_{n-1}^{sph} , т. е. u(n-1). Полный набор из 4n-7 функционально–независимых интегралов движения включает в себя:

$$\tilde{H}_n, \rho_{11}, \rho_{12}, \xi_{12}, \rho_{22}, \rho_{1i}, \xi_{1i}, \rho_{2i}, \xi_{2i}, \qquad (2.125)$$

где i = 3, ..., n - 1. Следовательно, у этой механической системы не хватает двух интегралов движения для максимальной суперинтегрируемости.

Таким образом, в второй главе диссертации нами построены новые суперинтегрируемые системы многих частиц, ассоциированные с геометрией экстремальной черной дыры Майерса–Перри–АдС вблизи горизонта событий для специального случая, когда все параметры вращения совпадают и детально исследована структура интегралов движения, отвечающих унитарной группе симметрий исходной фоновой метрики.

Глава 3

Геометрия экстремальных черных дыр вблизи горизонта событий и суперсимметричная механика

В этой главе строятся модели $\mathcal{N} = 2$ суперконформной механики, являющиеся суперсимметричными обобщениями бозонных моделей, изученных во второй главе. В частности, строятся суперсимметричные расширения модели частицы вблизи горизонта событий черной дыры Керра и заряженной частицы вблизи горизонта событий черной дыры Керра–Ньюмана-АдС. Кроме того, аналогичное расширение строится для заряженной частицы, движущейся вблизи горизонта событий черной дыры Мелвина–Керра [103]. Помимо этого, исследуется алгебра суперсимметрии пространства анти-де Ситтера, построенная при помощи спинорной производной Ли [100], и показывается, что она эквивалентна алгебре суперсимметрий $\mathcal{N} = 2$ суперчастицы в пространстве анти-де Ситтера [104].

3.1 Алгебра суперсимметрии AdS_2 и $\mathcal{N}=2$ суперчастица

Метрика пространства AdS₂ в координатах Пуанкаре имеет вид:

$$ds^{2} = g_{ij}dx^{i} dx^{j} = -\frac{r^{2}}{M^{2}}dt^{2} + \frac{M^{2}}{r^{2}}dr^{2}.$$
(3.1)

Тетрада и спиновая связность задаются выражениями¹:

$$e_i^{\hat{i}} = \begin{pmatrix} \frac{r}{M} & 0\\ 0 & \frac{M}{r} \end{pmatrix}, \qquad (3.2)$$

$$\omega_{i\ \hat{k}}^{\ \hat{j}} = \begin{cases} \frac{r}{M^2}, i = t; \hat{j} = \hat{t}, \hat{k} = \hat{r}; \hat{j} = \hat{r}, \hat{k} = \hat{t} \\ 0 \end{cases}$$
(3.3)

С помощью гамма-матриц $\gamma_i = e_i^{\hat{i}} \gamma_{\hat{i}}$ строится ковариантная производная для спиноров Дирака:

$$\nabla_i = \partial_i - \frac{1}{8} \omega_i^{\ \hat{j}\hat{k}} [\gamma_{\hat{j}}, \gamma_{\hat{k}}]. \tag{3.4}$$

Спинором Киллинга в пространстве с космологической постоянной λ называется Дираковский спинор, удовлетворяющий уравнению:

$$\nabla_i \varepsilon = \frac{i}{2} \lambda \gamma_i \varepsilon, \qquad (3.5)$$

где $\lambda^{-1} = M$ – радиус кривизны пространства. Подставляя в это уравнение выражения (3.2), (3.3) и (3.4), получаем следующую систему уравнений:

$$\begin{cases} \partial_r \varepsilon = \frac{i}{2r} \gamma_{\hat{r}} \varepsilon \\ \partial_t \varepsilon - \frac{r}{2M^2} \gamma_{\hat{t}} \gamma_{\hat{r}} \varepsilon = \frac{ir}{2M^2} \gamma_{\hat{t}} \quad \Rightarrow \quad \partial_t \varepsilon = \frac{r}{M^2} \gamma_{\hat{t}} \frac{1}{2} (\gamma_{\hat{r}} + i) \varepsilon \end{cases}$$
(3.6)

Ее решение имеет вид:

$$\varepsilon(t,r) = \varepsilon_{-} + \varepsilon_{+} = \sqrt{r}\varepsilon_{-}^{0} + \left(\frac{1}{\sqrt{r}} + \sqrt{r}\frac{it}{M^{2}}\gamma_{\hat{t}}\right)\varepsilon_{+}^{0}, \qquad (3.7)$$

 $^{^1}$ Латинскими буквами обозначены мировые индексы, латинскими буквами со шляпками – индексы в касательном расслоении, $e^i_{\hat{i}}$ – обратная тетрада.

где $\varepsilon_{\pm}^0 = const$, а ε_{\pm} (как и ε_{\pm}^0) – собственные векторы матрицы $\gamma_{\hat{r}}$, отвечающие собственным значениям $\pm i$ соответственно:

$$\varepsilon_{-}(t,r) = \sqrt{r} \left(\frac{it}{M^2} \gamma_t \varepsilon_+^0 + \varepsilon_-^0\right), \quad \varepsilon_{+}(t,r) = \frac{\varepsilon_+^0}{\sqrt{r}}.$$
(3.8)

Переопределим постоянные $\varepsilon^0_{\pm},$ сделав их безразмерными:

$$\varepsilon_{-}^{0} \to \frac{\varepsilon_{-}^{0}}{M}, \quad \varepsilon_{+}^{0} \to M^{3/2} \varepsilon_{+}^{0},$$
(3.9)

тогда решение (3.7) перепишется следующим образом:

$$\varepsilon(t,r) = q(t,r) + s(t,r), \qquad (3.10)$$

где обозначено:

$$q(t,r) = \sqrt{\frac{r}{M}} \varepsilon_{-}^{0}, \quad s(t,r) = \left(M\sqrt{\frac{M}{r}} + it\sqrt{\frac{r}{M}}\gamma_{\hat{t}}\right)\varepsilon_{+}^{0}.$$
 (3.11)

Отметим, что $q = \varepsilon|_{\varepsilon^0_+ = 0}, s = \varepsilon|_{\varepsilon^0_- = 0}.$

Далее, легко проверить, что выражение

$$K^{i} = \bar{\varepsilon}\gamma^{i}\varepsilon, \qquad (3.12)$$

где $\bar{\varepsilon} = \varepsilon^{\dagger} \gamma^{\hat{t}}$, удовлетворяет уравнению $\nabla_{(i} K_{j)} = 0$ и значит является вектором Киллинга. Применив формулу (3.12) к спинорам q и s, получаем соответственно:

$$H^{i} = \begin{pmatrix} 1\\ 0 \end{pmatrix} \varepsilon_{-}^{0\dagger} \varepsilon_{-}^{0}, \qquad (3.13)$$

$$K^{i} = \begin{pmatrix} \frac{M^{4}}{r^{2}} + t^{2} \\ -2tr \end{pmatrix} \varepsilon^{0\dagger}_{+} \varepsilon^{0}_{+}.$$
(3.14)

А взяв перекрестные слагаемые в выражении

$$\bar{\varepsilon}\gamma^{i}\varepsilon = \bar{q}\gamma^{i}q + \bar{s}\gamma^{i}s + \bar{q}\gamma^{i}s + \bar{s}\gamma^{i}q \qquad (3.15)$$

мы находим:

$$D^{i} = \begin{pmatrix} t \\ -r \end{pmatrix} \left(\frac{i}{2}\varepsilon_{+}^{0\dagger}\gamma_{t}\varepsilon_{-}^{0} + h.c.\right), \qquad (3.16)$$

где h.c. обозначает эрмитово сопряженное слагаемое. Векторное поле H порождает сдвиги по времени, D – дилатации, а K – специальные конформные преобразования. Таким образом, получаем полную алгебру so(2,1), которая является алгеброй Ли группы изометрий пространства AdS_2 .

Алгебраическая структура в пространстве спиноров Киллинга задается посредством производной Ли [100, 101, 102]:

$$\mathcal{L}_{V}\varepsilon = V^{i}\nabla_{i}\varepsilon - \frac{1}{8}\nabla_{i}V_{j}\gamma^{[i}\gamma^{j]}\varepsilon = \frac{i}{2M}V^{i}\gamma_{i}\varepsilon - \frac{1}{2}\nabla_{t}V_{r}\gamma^{t}\gamma^{r}\varepsilon, \qquad (3.17)$$

с учетом (3.5). $(V, \varepsilon) = L_V \varepsilon$ при $V \in A_0, \varepsilon \in A_1$ и полагаем, что $(\varepsilon, V) = L_V \varepsilon$. В частности,

$$\mathcal{L}_H q = 0, \quad \mathcal{L}_H s = \sqrt{\frac{r}{M}} i \gamma_{\hat{t}} \varepsilon^0_+.$$

Наложим следующее условие на постоянные спиноры:

$$\varepsilon_{-}^{0} = -i\gamma_{\hat{t}}\varepsilon_{+}^{0}, \qquad (3.18)$$

тогда второе равенство примет вид

$$\mathcal{L}_H s = -q. \tag{3.19}$$

Кроме того, с учетом (3.18) получаем равенства

$$L_D q = -\frac{1}{2}q, \quad L_D s = \frac{1}{2}s, \quad L_K q = s, \quad L_K s = 0.$$
 (3.20)

Помимо этого, находим следующие соотношения (см. (3.60), (3.14), (3.16)):

$$\bar{q}\gamma^{i}q = \begin{pmatrix} 1\\ 0 \end{pmatrix} \varepsilon_{-}^{0\dagger}\varepsilon_{-}^{0}, \quad \bar{s}\gamma^{i}s = \begin{pmatrix} \frac{M^{4}}{r^{2}} + t^{2}\\ -2tr \end{pmatrix} \varepsilon_{-}^{0\dagger}\varepsilon_{-}^{0}, \quad \bar{q}\gamma^{i}s = -\begin{pmatrix} t\\ -r \end{pmatrix} \varepsilon_{-}^{0\dagger}\varepsilon_{-}^{0}.$$
(3.21)

Выписывая эти равенства вместе с соотношениями для векторов Киллинга, получаем:

$$L_{H}q = 0, \qquad L_{H}s = -q, \qquad L_{D}q = -\frac{1}{2}q, \qquad L_{D}s = \frac{1}{2}s,$$

$$L_{K}q = s, \qquad L_{K}s = 0, \qquad [H, D] = H, \qquad [H, K] = 2D,$$

$$[D, K] = K, \quad \bar{q}(-2i\gamma^{i})q = -2iH^{i}, \quad \bar{s}(-2i\gamma^{i})s = -2iK^{i}, \quad \bar{q}(-2i\gamma^{i})s = 2iD^{i}.$$
(3.22)

Полученные равенства аналогичны соответствующим структурным соотношениям суперконформной алгебры su(1,1|1):

$$\{H,Q\} = 0, \quad \{H,S\} = -Q, \quad \{D,Q\} = -\frac{1}{2}Q, \quad \{D,S\} = \frac{1}{2}S$$
$$\{K,Q\} = S, \quad \{K,S\} = 0, \quad \{H,D\} = H, \quad \{H,K\} = 2D, \quad , \quad (3.23)$$
$$\{D,K\} = K, \quad \{\bar{Q},Q\} = -2iH, \quad \{\bar{S},S\} = -2iK, \quad \{\bar{S},Q\} = 2i(D+iJ)$$

с той лишь разницей, что в (3.22) отсутствует генератор R-симметрии J, который отвечает глобальному U(1)-преобразованию фермионных степеней свободы.

В силу (3.18) спинор Киллинга ε реально зависит только от одной киральной компоненты и, следовательно, имеет только два независимых вещественных параметра: ε_{-}^{0} и $\varepsilon_{-}^{0\dagger}$. Стоит заметить, что выделение только одной киральной компоненты является обычным при работе в супергравитации (см., например, [105]). При исследовании взаимосвязи между спинорами Киллинга и суперзарядами суперчастицы необходимо строить $\mathcal{N} = 2$ суперсимметричное расширение бозонной частицы в AdS_2 .

 $\mathcal{N} = 2$ суперчастица в AdS_2 описывается следующими интегралами движения [86, 98]:

$$Q = -i\sqrt{2} \frac{rp + imM}{\sqrt{\varkappa}} \psi, \quad \bar{Q} = i\sqrt{2} \frac{rp - imM}{\sqrt{\varkappa}} \bar{\psi},$$

$$S = -tQ + i\sqrt{2\varkappa} \psi, \qquad \bar{S} = -t\bar{Q} - i\sqrt{2\varkappa} \bar{\psi},$$

$$J = mM + \frac{1}{2} \psi \bar{\psi}, \qquad H = H_0 - \frac{mM}{\varkappa} \psi \bar{\psi},$$

$$D = tH + rp, \qquad K = t^2H + 2trp + \varkappa,$$
(3.24)

где:

$$H_0 = \frac{r}{M^2} \sqrt{r^2 p^2 + m^2 M^2}, \quad \varkappa = \frac{M^2}{r} \sqrt{r^2 p^2 + m^2 M^2}, \quad (3.25)$$

 H_0 – исходный гамильтониан, а фермионные степени свободы подчиняются соотношениям

$$\psi^2 = \bar{\psi}^2 = 0, \quad \psi \bar{\psi} = -\bar{\psi} \psi.$$
 (3.26)

Можно проверить, что величины (3.24) подчиняются структурным соотношениям

супералгебры su(1, 1|1):

$$\{Q, \bar{Q}\} = -2iH, \ \{K, Q\} = S, \ \{Q, \bar{S}\} = 2i(D + iJ), \ \{D, Q\} = -\frac{1}{2}Q$$

$$\{H, S\} = -Q, \ \{D, S\} = \frac{1}{2}S, \ \{S, \bar{S}\} = -2iK, \ \{J, Q\} = -\frac{i}{2}Q$$

$$\{J, S\} = -\frac{i}{2}S, \ \{H, D\} = H, \ \{H, K\} = 2D,$$

$$\{D, K\} = K.$$

$$\{D, K\} = K.$$

Приведенные соотношения обнаруживают интересное сходство между структурой суперзарядов Q и S и спиноров Киллинга q и s:

$$q = -i\sqrt{\frac{r}{M}}\gamma_{\hat{t}}\varepsilon^0_+, \quad s = -t\,q + M\sqrt{\frac{M}{r}}\varepsilon^0_+. \tag{3.28}$$

В частности, спиноры s
иqи суперзарядыSиQ подчиняются аналогичным структурным со
отношениям.

3.2 $\mathcal{N} = 2$ суперчастица вблизи горизонта событий экстремальной черной дыры Керра

Как отмечалось ранее, $SO(2,1) \times U(1)$ является группой глобальных симметрий модели массивной частицы, движущейся вблизи горизонта событий экстремальной черной дыры Керра. Указанная группа является бозонной подгруппой в суперконформной группе SU(1,1|1). В данном разделе, следуя работе [59], мы опишем $\mathcal{N} = 2$ суперсимметричное расширение бозонной конформной механики, ассоциированной с геометрией экстремальной черной дыры Керра вблизи горизонта событий.

Помимо генераторов $so(2,1) \oplus u(1)$ -подалгебры, $\mathcal{N} = 2$ суперконформная алгебра включает в себя генераторы суперсимметрии Q, \bar{Q} и суперконформные генераторы S, \bar{S} (здесь и далее черта обозначает комплексное сопряжение). Для построения суперсимметричного расширения, введем в рассмотрение две фермионные степени свободы ψ и $\bar{\psi}$, каноническая скобка имеет вид:

$$\{\psi, \bar{\psi}\} = -i. \tag{3.29}$$

Данное соотношение есть скобка Дирака, построенная по связям второго рода, ассоциированным с фермионным кинетическим слагаемым $i/2 \int dt (\bar{\psi} \dot{\psi} - \dot{\bar{\psi}} \psi)$.

Поступая по аналогии с $\mathcal{N} = 4$ суперчастицей, движущейся вблизи горизонта событий экстремальной черной дыры Райсснера–Нордстрема [93], генератор суперсимметрии построим в виде:

$$Q = \frac{\left(rp_r + i\sqrt{\frac{1+\cos^2\theta}{2}(mr_0)^2 + p_{\theta}^2 + \left(\frac{1+\cos^2\theta}{2\sin\theta}\right)^2 p_{\varphi}^2 - p_{\varphi}^2}\right)\psi}{\left[\frac{r_0^2}{2r}\left(\sqrt{\frac{1+\cos^2\theta}{2}(mr_0)^2 + (rp_r)^2 + p_{\theta}^2 + \left(\frac{1+\cos^2\theta}{2\sin\theta}\right)^2 p_{\varphi}^2} + p_{\varphi}\right)\right]^{1/2}}.$$
(3.30)

Скобки Q и \overline{Q} имеют вид:

$$\{Q,\bar{Q}\} = -2iH, \quad \{Q,Q\} = 0, \quad \{\bar{Q},\bar{Q}\} = 0,$$
 (3.31)

откуда следует выражение для полного суперсимметричного гамильтониана:

$$H = \frac{r}{r_0^2} \left(\sqrt{\frac{1 + \cos^2 \theta}{2} (mr_0)^2 + (rp_r)^2 + p_\theta^2 + \left(\frac{1 + \cos^2 \theta}{2\sin \theta}\right)^2 p_\varphi^2} - p_\varphi - \frac{\sqrt{\frac{1 + \cos^2 \theta}{2} (mr_0)^2 + p_\theta^2 + \left(\frac{1 + \cos^2 \theta}{2\sin \theta}\right)^2 p_\varphi^2 - p_{\varphi^2}}}{\sqrt{\frac{1 + \cos^2 \theta}{2} (mr_0)^2 + (rp_r)^2 + p_\theta^2 + \left(\frac{1 + \cos^2 \theta}{2\sin \theta}\right)^2 p_\varphi^2} + p_\varphi} \psi \bar{\psi} \right).$$
(3.32)

Необходимо отметить, что бозонная часть (3.32) в точности воспроизводит бозонный гамильтониан (2.2). Дополнительное слагаемое, пропорциональное $\psi\bar{\psi}$, описывает взаимодействие бозонов и фермионов. Сохранение во времени суперзарядов следует из тождеств Якоби, вовлекающих (Q, Q, \bar{Q}) и (Q, \bar{Q}, \bar{Q}) .

Для построения генераторов дилатаций и специальных конформных преобразований D и K в суперсимметричной модели используем формулы (2.3), в которой заменим гамильтониан бозонной теории на полный суперсимметричный гамильтониан (3.32). Построенные генераторы удовлетворяют структурным соотношениям конформной алгебры с учетом (3.29).

Для нахождения генератора суперконформных преобразований S достаточно вычислить скобку Пуассона генераторов K и Q

$$\{K, Q\} = S, (3.33)$$

откуда находим:

$$S = -tQ - \left[\frac{2r_0^2}{r}\left(\sqrt{\frac{1+\cos^2\theta}{2}(mr_0)^2 + (rp_r)^2 + p_\theta^2 + \left(\frac{1+\cos^2\theta}{2\sin\theta}\right)^2 p_\varphi^2} + p_\varphi\right)\right]^{1/2}\psi.$$
(3.34)

Вычисляя затем скобку Q и \bar{S}

$$\{Q, \bar{S}\} = 2i(D+iJ), \tag{3.35}$$

получаем генератор преобразований R-симметрии J в полной $\mathcal{N} = 2$ суперконформной алгебре:

$$J = \sqrt{\frac{1 + \cos^2 \theta}{2} (mr_0)^2 + p_{\theta}^2 + \left(\frac{1 + \cos^2 \theta}{2\sin \theta}\right)^2 p_{\varphi}^2 - p_{\varphi}^2} + \frac{1}{2} \psi \bar{\psi}.$$
 (3.36)

Можно также проверить, что S, \bar{S} , а также J сохраняются во времени. Остальные структурные соотношения супералгебры su(1,1|1) также оказываются выполненными и имеют вид:

$$\{D,Q\} = \frac{1}{2}Q, \quad \{H,S\} = -Q \quad \{D,S\} = \frac{1}{2}S,$$

$$\{S,\bar{S}\} = -2iK, \quad \{J,Q\} = -\frac{i}{2}Q, \quad \{J,S\} = -\frac{i}{2}S;$$
(3.37)

Прочие скобки обращаются в ноль. Стоит отметить, что $P = p_{\varphi}$ является интегралом движения, коммутирующим с остальными генераторами в $\mathcal{N} = 2$ суперконформной алгебре. Следовательно, супергруппа построеннй модели суперчастицы есть $SU(1, 1|1) \times U(1)$.

В данном разделе мы обобщим результаты предудущего раздела на случай экстремальной черной дыры Керра-Ньюмана-АдС. Будем искать генераторы суперсимметрии в наиболее общем виде

$$Q = ae^{ib}\psi \quad \Rightarrow \quad \bar{Q} = ae^{-ib}\bar{\psi}, \tag{3.38}$$

где a и b – вещественные функции на фазовом пространстве системы $(r, \theta, \varphi, p_r, p_\theta, p_\varphi)$. Последние зафиксируем из структурных соотношений супералгебры su(1, 1|1) и требования, чтобы в бозонном пределе суперсимметричный гамильтониан сводился к бозонному в (2.25). Вычисляя скобку $\{Q, \bar{Q}\} = -2iH$ находим:

$$H = \frac{a^2}{2} + \{\frac{a^2}{2}, b\}\psi\bar{\psi},\tag{3.39}$$

тогда в бозонном пределе имеем:

$$H|_{\psi=\bar{\psi}=0} = H_B = \frac{a^2}{2},$$

откуда однозначно фиксируется функция а:

$$a = \sqrt{2H_B}.\tag{3.40}$$

Далее вычислим скобку $\{D,Q\}=-1/2Q$:

$$\{D,Q\} = t\underbrace{\{H,Q\}}_{0} + \{rp_r, ae^{ib}\psi\} = -\frac{1}{2}Q + iQ\{rp_r,b\} = -\frac{1}{2}Q \Rightarrow$$
$$\Rightarrow \{rp_r,b\} = 0,$$

откуда заключаем, что

$$b = b(rp_r, \theta, p_\theta, \varphi, p_\varphi) \tag{3.41}$$

Принимая во внимание структурное соотношение скобку $\{H, K\} = 2D$, находим:

$$\{H, K\} = t^{2} \underbrace{\{H, H\}}_{0} + \underbrace{\{H, \varkappa\}}_{2rp_{r} + \{H_{F}, \varkappa\}} + 2t \underbrace{\{H, rp_{r}\}}_{H} = 2(tH + rp_{r})$$

откуда следует:

$$\{H_B, \{b, \varkappa\}\} = 0. \tag{3.42}$$

А из скобки $\{K,Q\}=S$ получаем выражение для суперконформного генератора:

$$S = \{\varkappa, Q\} - tQ = -tQ - \frac{rp_r}{H_B}Q + iQ\{\varkappa, b\}.$$
 (3.43)

Соотношения (3.41), (3.42), (3.43) позволяют вычислить скобку

$$\{S, \bar{S}\} = -2iK,$$
 (3.44)

из которой следует уравнение на *b*. Все остальные соотношения не налагают дополнительных ограничений. Прямые вычисления приводят к уравнению:

$$\{\varkappa, b\} = \frac{\sqrt{\mathcal{C}}}{H_B},\tag{3.45}$$

где C – элемент Казимира (2.30), а вид \varkappa задается формулой (2.26).

Уравнение (3.45) является неоднородным дифференциальным уравнением в частных производных первого порядка. Его частным решением является функция $\left(-\arctan\frac{rp_r}{\sqrt{c}}\right)$. Тогда общее решение имеет вид:

$$b = -\arctan\frac{rp_r}{\sqrt{\mathcal{C}}} + b_{hom},\tag{3.46}$$

где b_{hom} является общим решением однородного уравнения $\{\varkappa, b\} = 0$. Это уравнение можно привести к виду

$$\varkappa \partial_x b - \partial_\theta \varkappa \partial_{p_\theta} b + \partial_{p_\theta} \varkappa \partial_\theta b + \partial_{p_\omega} \varkappa \partial_\omega b = 0,$$

где $x \equiv rp_r$. Присоединенная система обыкновенных дифференциальных уравнений включает в себя:

$$\begin{cases} \frac{dx}{d\varphi} = \frac{\varkappa}{\partial_{p_{\theta}}\varkappa} \\ \frac{dp_{\theta}}{d\varphi} = -\frac{\partial_{\theta}\varkappa}{\partial_{p_{\varphi}}\varkappa} \\ \frac{d\theta}{d\varphi} = \frac{\partial_{\theta}\varkappa}{\partial_{p_{\varphi}}\varkappa} \end{cases}$$

и поскольку \varkappa не зависит от φ , то первые интегралы входят в выражение для $b_{hom}(x, \theta, p_{\theta})$ как функции от φ . Таким образом, $b_{hom} = b_{hom}(\varphi)$. Но $P = p_{\varphi}$ являлся интегралом движения в бозонной теории. Поэтому естественно потребовать, чтобы он сохранялся и в ее суперсимметричном обобщении. Следовательно, координата φ должна быть циклической и $b_{hom} \equiv 0$. Окончательное выражение для функции b имеет вид:

$$b = -\arctan\frac{rp_r}{\sqrt{\mathcal{C}}}.$$
(3.47)

Зная выражения для a и b (3.61, 3.47), можно теперь вычислить все генераторы супералгебры su(1,1|1):

$$H = H_B - \frac{\sqrt{\mathcal{C}}}{\varkappa} \psi \bar{\psi}; \quad J = \frac{1}{2} \psi \bar{\psi} + \sqrt{\mathcal{C}};$$

$$D = tH + rp_r; \quad K = \varkappa + t^2 H + 2trp_r;$$

$$Q = -i \frac{rp_r + i\sqrt{\mathcal{C}}}{\sqrt{\frac{1}{2}\varkappa}} \psi; \quad S = -tQ + i\sqrt{2\varkappa}\psi.$$
(3.48)

Поскольку по построению $P = p_{\varphi}$ также является интегралом движения, то полная супергруппа симметрий есть $SU(1,1|1) \times U(1)$. Отметим, что проведенное посторение не налагает ограничений на параметры частицы, в отличие от, например, случая экстремальной черной дыры Райсснера–Нордстрема [93].

3.4 $\mathcal{N} = 2$ суперчастица вблизи горизонта событий экстремальной черной дыры Мелвина–Керра

Геометрия Мелвина–Керра [17] обобщает решение Керра на случай намагниченной черной дыры. Вблизи горизонта событий метрика имеет вид ([22], см. также Раздел 1.3):

$$ds^{2} = \Gamma(\theta) \left(-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} + d\theta^{2} + \gamma(\theta)(d\varphi + krdt)^{2} \right), \qquad (3.49)$$

где обозначено:

$$\Gamma(\theta) = M^2(\sigma^2 + \tau^2 \cos^2 \theta), \quad \gamma(\theta) = \frac{4\sin^2 \theta}{(\sigma^2 + \tau^2 \cos^2 \theta)^2}, \quad k = -\sigma\tau.$$
(3.50)

Постоянные σ и τ связаны с массой M и магнитным зарядом B черной дыры следующим образом:

$$\sigma = 1 + B^2 M^2, \quad \tau = 1 - B^2 M^2. \tag{3.51}$$

Один-форма, задающая векторный потенциал А, имеет вид:

$$A = f(\theta)(krdt + d\phi), \quad f(\theta) = \frac{2C_1\sigma\tau\cos\theta + C_2(\tau^2\cos^2\theta - \sigma^2)}{\sigma^2 + \tau^2\cos^2\theta}, \quad (3.52)$$

где произвольные постоянные C_1, C_2 удовлетворяют условию:

$$C_1^2 + C_2^2 = \frac{M^2(\tau^2 - \sigma^2)}{\sigma^2 \tau^2}.$$
(3.53)

Изометрии метрики (3.49) описываются векторными полями Киллинга:

$$\partial_t, \quad t\partial_t - r\partial_r, \quad (t^2 + r^{-2})\partial_t - 2tr\partial_r - \frac{2k}{r}\partial_{\varphi}$$
 (3.54)

образующими алгебру so(2,1). Еще одна симметрия связана с азимутальной симметрией ∂_{φ} .

Гамильтониан конформной механики, ассоциированной с геометрией черной дырой Мелвина–Керра, можно построить, рассмотрев частицу с массой *m* и электрическим зарядом *e*, и разрешая уравнение массовой оболочки:

$$g^{ij}(p_i - eA_i)(p_j - eA_j) = -m^2 aga{3.55}$$

относительно p_0 :

$$H = -p_0 = r \left[\sqrt{m^2 \Gamma(\theta) + (rp_r)^2 + p_{\theta}^2 + \frac{1}{\gamma(\theta)} \left(p_{\varphi} - ef(\theta) \right)^2} - k p_{\varphi} \right].$$
 (3.56)

Гамильтониан генерирует трансляции по времени, в то время как остальные векторные поля Киллинга дают следующие сохраняющиеся величины:

$$K = t^{2}H + \frac{1}{r}\left(\sqrt{m^{2}\Gamma(\theta) + (rp_{r})^{2} + p_{\theta}^{2} + \frac{1}{\gamma(\theta)}(p_{\varphi} - ef(\theta))^{2} + kp_{\varphi}}\right) + 2trp_{r},$$

$$D = tH + rp_{r}, \quad P = p_{\phi}.$$
(3.57)

Для построения $\mathcal{N} = 2$ суперсимметричного расширения данной динамической системы, вводим в рассмотрение фермионные степени свободы $\psi, \bar{\psi}$, которые являются комплексно сопряженными друг к другу и подчиняются канонической скобке:

$$\{\psi, \bar{\psi}\} = -i. \tag{3.58}$$

Как и в предыдущем случае, генераторы суперсимметри
и $Q,\,\bar{Q}$ выберем в наиболее общей форме:

$$Q = ae^{ib}\psi, \quad \bar{Q} = ae^{-ib}\bar{\psi}, \tag{3.59}$$

где a и b – вещественные функции переменных фазового пространства $r, \theta, \phi, p_r, p_{\theta}, p_{\varphi}$. Из соотношения $\{Q, \bar{Q}\} = -2iH$ находим:

$$H = \frac{1}{2}a^2 + \frac{1}{2}\{a^2, b\}\psi\bar{\psi}, \qquad (3.60)$$

что определяет вид функции а:

$$a = \sqrt{2H_0}.\tag{3.61}$$

Здесь H_0 – это бозонный предел гамильтониана $H_0 = H|_{\psi=\bar{\psi}=0}$, который совпадает с гамильтонианом (3.56). В полной суперсимметричной модели он должен быть расширен фермионным вкладом, пропорциональным $\psi\bar{\psi}$ в (3.60). Нужно заметить, что в суперсимметричной теории интегралы движения D и K сохраняют свой общий вид (3.57), при этом H необходимо заменить на полный суперсимметричный гамильтониан (3.60).

Для нахождения вида функции b, рассмотрим скобку $\{D, Q\} = -\frac{1}{2}Q$, из которой следует, что:

$$\{rp_r, b\} = 0. (3.62)$$

Это уравнение означает, что радиальная часть *b* зависит только от произведения rp_r : $b = b(rp_r, \theta, \varphi, p_{\theta}, p_{\varphi})$. Скобка $\{S, \bar{S}\} = -2iK$ дает неоднородное дифференциальное уравнение первого порядка:

$$\{\varkappa, b\} = \frac{\sqrt{\mathcal{C}}}{H_0},\tag{3.63}$$

где обозначено:

$$\varkappa = \frac{1}{r} \left[\sqrt{m^2 \Gamma(\theta) + (rp_r)^2 + p_\theta^2 + \frac{1}{\gamma(\theta)} \left(p_\varphi - ef(\theta) \right)^2} + kp_\varphi \right],$$

$$\mathcal{C} = m^2 \Gamma(\theta) + p_\theta^2 + \frac{1}{\gamma(\theta)} \left(p_\varphi - ef(\theta) \right)^2 - (kp_\varphi)^2.$$
(3.64)

Следует отметить, что C является элементом Казимира алгебры so(2, 1). Общее решение уравнения (3.63) является суммой частного решения неоднородного уравнения и общего решения однородного уравнения. Частное решение выбираем в виде:

$$b_{part} = -\arctan\left(\frac{rp_r}{\sqrt{\mathcal{C}}}\right),$$
(3.65)

а общее решение однородного уравнения, в соответствии с методом характеристик, дается соотношением:

$$b_{hom} = b_{hom} \left(rp_r - \frac{\varkappa}{\varkappa_{p_{\varphi}}} \phi, p_{\theta} + \frac{\varkappa_{\theta}}{\varkappa_{p_{\phi}}} \phi, \theta - \frac{\varkappa_{\theta}}{\varkappa_{p_{\varphi}}} \varphi \right),$$
(3.66)

где $\varkappa_{p_{\varphi}} = \frac{\partial \varkappa}{\partial p_{\varphi}}$ и $\varkappa_{\theta} = \frac{\partial \varkappa}{\partial \theta}$. Из (3.66) вытекает, что b_{hom} зависит от азимутальной угловой переменной φ . Как следствие, то же самое имеет место для суперзарядов. Однако, они не могут зависеть от φ , поскольку p_{φ} является сохраняющейся величиной и значит φ должна быть циклической переменной. Таким образом, b_{hom} должно быть постоянной величиной. Как следует из (3.59), произвол в выборе этой константы соответствует U(1)-преобразованию, которое не влияет на динамику системы. Таким образом, заключаем, что без ограничения общности можно положить $b_{hom} = 0$.

В итоге, однозначное $\mathcal{N} = 2$ суперсимметричное расширение модели массивной релятивистской частицы, движущейся вблизи горизонта событий экстремальной черной дыры Мелвина–Керра, определяется следующим набором функций:

$$H = H_0 - \frac{\sqrt{\mathcal{C}}}{\varkappa} \psi \bar{\psi}, \quad Q = i\sqrt{2} \left(\frac{rp_r - i\sqrt{\mathcal{C}}}{\sqrt{\varkappa}}\right) \psi,$$

$$S = -tQ + i\sqrt{2\varkappa}\psi, \quad J = \frac{1}{2}\psi\bar{\psi} + \sqrt{\mathcal{C}},$$
(3.67)

а также (3.57), где Н обозначает полный суперсимметричный гамильтониан.

Таким образом, в третьей главе диссертации нами построено $\mathcal{N} = 2$ суперсимметричное расширение модели массивной заряженной частицы, движущейся вблизи горизонта событий экстремальной черной дыры Керра–Ньюмана–АдС. Показано, что $\mathcal{N} = 2$ суперсимметричное расширение имеет теоретико–групповую природу и строится в терминах генераторов конформной подалгебры so(2,1) в суперконформной алгебре su(1,1|1) и фермионных степеней свободы. Доказана единственность построенного $\mathcal{N} = 2$ суперсимметричного расширения. Рассмотрение обобщено на случай экстремальной черной дыры Мелвина–Керра.

Заключение

В заключение перечислим основные результаты, полученные в данной диссертационной работе.

- 1. Построено новое решение вакуумных уравнений Эйнштейна, описывающее экстремальную черную дыру Майерса–Перри–АдС вблизи горизонта событий для специального случая, когда все параметры вращения совпадают. С использованием инвариантов конформной группы SO(2, 1), построено новое решение вакуумных уравнений Эйнштейна, которое определяет D = 5 метрику Майерса–Перри с ненулевым НУТ зарядом вблизи горизонта событий.
- Для геометрии экстремальной черной дыры Керра–Ньюмана–АдС вблизи горизонта событий доказана приводимость тензора Киллинга второго ранга. Построено явное выражение, связывающее компоненты тензора Киллинга и компоненты векторов Киллинга, отвечающих конформной группе SO(2, 1).
- 3. Построены новые суперинтегрируемые системы многих частиц, ассоциированные с геометрией экстремальной черной дыры Майерса–Перри–АдС вблизи горизонта событий для специального случая, когда все параметры вращения совпадают. Детально исследована структура интегралов движения, отвечающих унитарной группе симметрий исходной фоновой метрики.
- 4. Построено N = 2 суперсимметричное расширение модели массивной заряженной частицы, движущейся вблизи горизонта событий экстремальной черной дыры Керра–Ньюмана–АдС. Показано, что N = 2 суперсимметричное расширение имеет теоретико–групповую природу и строится в терминах

генераторов конформной подалгебры so(2,1) в суперконформной алгебре su(1,1|1) и фермионных степеней свободы. Доказана единственность построенного $\mathcal{N} = 2$ суперсимметричного расширения. Рассмотрение обобщено на случай экстремальной черной дыры Мельвина–Керра.

Результаты диссертации опубликованы в работах [68, 82, 86, 103, 104].

Список литературы

- [1] Polchinsky J. String Theory / J. Polchinsky. Cambridge: Cambridge University Press, 1998. - в 2-х тт.
- [2] Strominger A. Microscopic origin of the Bekenstein-Hawking entropy /
 A. Strominger, C. Vafa // Phys.Lett. B. 1996. Vol. 379. PP. 99-104.
- [3] Maldacena J. The large N limit of superconformal field theories and supergravity
 / J. Maldacena. // Adv. Theor. Math. Phys. 1998. Vol. 2. P. 231.
- [4] Gubser S. Gauge theory correlators from non-critical string theory / S. Gubser,
 I. Klebanov, A. Polyakov // Phys. Lett. B. 1998. Vol. 428. P. 105.
- [5] Witten E. Anti de Sitter space and holography / E. Witten // Adv. Theor. Math. Phys. - 1998. - Vol. 2. - P. 253.
- [6] Guica M. The Kerr/CFT Correspondence / M. Guica, T. Hartman, W. Song,
 A. Strominger // Phys Rev. D. 2009. Vol. 80. №124008.
- [7] Bredberg I. Cargese Lectures on the Kerr/CFT Correspondence / I. Bredberg,
 C. Keeler, V. Lysov, A. Strominger // Nucl. Phys. Proc. Suppl. 2011. Vol. 216.
 pp. 194-210.
- [8] Compere G. The Kerr/CFT Correspondence and its Extensions / G. Compere // Living Reviews in Relativity. - 2012. - Vol. 15. - №lrr-2012-11.
- [9] Bardeen J. The Extreme Kerr Throat Geometry: A Vacuum Analog of AdS₂ × S²
 / J. Bardeen, G. Horowitz // Phys. Rev. D. 1999. Vol. 60. №104030.

- [10] Kunduri H. Near-horizon symmetries of extremal black holes / H. Kunduri,
 J. Lucietti, H. Reall // Class. Quant. Grav. 2007. Vol. 24. P. 4169-4190.
- [11] Kunduri H. A classification of near-horizon geometries of extremal vacuum black holes / H. Kunduri, J. Lucietti // J. Math. Phys. - 2009. - Vol. 50. - №082502.
- [12] Lu H. Kerr-AdS/CFT correspondence in diverse dimensions / H. Lu, J. Mei,
 C. Pope // JHEP. 2009. Vol. 04. №054.
- [13] Azeyanagi T. On non-chiral extension of Kerr/CFT / T. Azeyanagi, N. Ogawa,
 S. Terashima // arxiv.org: e-print archive. URL: http://arxiv.org/abs/1102.3423.
- [14] Ashtekar A. Quantum geometry of isolated horizons and black hole entropy / A. Ashtekar, J. Baez, K. Krasnov // Adv. Theo. Math. Phys. 2000. - Vol. 4. - PP. 1–95.
- [15] Harrison B. New Solutions of the Einstein-Maxwell Equations from Old /
 B. Harrison // J. Math. Phys. 1968. Vol. 9. P. 1744.
- [16] Ernst F. Black holes in a magnetic universe / F. Ernst // J. Math. Phys. 1976.
 Vol. 17. P. 54.
- [17] Ernst F. Kerr black holes in a magnetic universe / F. Ernst, W. Wild // J. Math.
 Phys. 1976. Vol. 17. P. 182.
- [18] Booth I. Insights from Melvin–Kerr–Newman spacetimes / I. Booth, M. Hunt, A. Palomo–Lozano, H. Kunduri // Class. Quant. Grav. - 2015. - Vol. 32. - №235025.
- [19] Gibbons G. Ergoregions in magnetized black hole spacetimes / G. Gibbons,
 A. Mujtaba, C. Pope // Class. Quant. Grav. 2013. Vol. 30. №125008.
- [20] Gibbons G. Thermodynamics of magnetized Kerr-Newman black holes /
 G. Gibbons, Y. Pang, C. Pope // Phys. Rev. D. 2014. Vol. 89. №044029.
- [21] Astorino M. Microscopic Entropy of the Magnetised Extremal Reissner-Nordstrom Black Hole / M. Astorino // JHEP. - 2015. - Vol. 10. - №016.

- [22] Siahaan H. Magnetized Kerr/CFT Correspondence / H. Siahaan // arxiv.org:
 e-print archive. URL: http://arxiv.org/abs/1508.01152.
- [23] Astorino M. Magnetised Kerr/CFT correspondence / M. Astorino // Phys. Lett.
 B. 2015. Vol. 751. PP. 96–106.
- [24] de Azcarraga J. A. Superconformal mechanics, black holes, and nonlinear realizations / J. A. de Azcarraga, J. M. Izquierdo, J. C. Perez Bueno, P. Townsend // Phys. Rev. D. - 1999. - Vol. 59. - №084015.
- [25] Papadopoulos G. Conformal and superconformal mechanics / G. Papadopoulos // Class. Quant. Grav. - 2000. - Vol. 17. - №3715.
- [26] Cacciatori S. w_{infty} algebras, conformal mechanics and black holes / S. Cacciatori,
 D. Klemm, D. Zanon // Class. Quant. Grav. 2000. Vol. 17. №1731.
- [27] Kreuzer M. Killing gauge for the 0-brane on AdS₂ × S² coset superspace / M. Kreuzer, G.-Zh. Zhou // Phys. Lett. B. 2000. Vol. 472. PP. 309.
- [28] Clement G. Conformal mechanics on rotating Bertotti–Robinson spacetime /
 G. Clement, D. Gal'tsov // Nucl. Phys. B. 2001. Vol. 619. P. 741.
- [29] Astorino M. AdS₂ supergravity and superconformal quantum mechanics /
 M. Astorino, S. Cacciatori, D. Klemm, D. Zanon // Ann.Phys. 2003. Vol. 304. P. 128.
- [30] Belucci S. AdS₂/CFT₁, canonical transformations and superconformal mechanics
 / S. Belucci, A. Galajinsky, E. Ivanov, S. Krivonos // Phys. Lett. B. 2003. Vol. 555. PP. 99-106.
- [31] Leiva C. Conformal symmetry of relativistic and nonrelativistic systems and AdS/CFT correspondence / C. Leiva, M. Plyushchay // Ann. Phys. - 2003. - Vol. 307. - P. 372.
- [32] Anabalon A. Interaction via reduction and nonlinear superconformal symmetry /
 A. Anabalon, M. Plyushchay // Phys. Lett. B. 2003. Vol. 572. P. 202.

- [33] Ivanov E. Conformal and superconformal mechanics revisited / E. Ivanov,
 S. Krivonos, J. Niederle // Nucl. Phys. B. 2004. Vol. 677. P. 485.
- [34] Ivanov E. N = 4, d = 1 supermultiplets from nonlinear realizations of D(2, 1; α)
 / E. Ivanov, S. Krivonos, O. Lechtenfeld // Class. Quant. Grav. 2004. Vol. 21. №1031.
- [35] Bellucci S. N = 8 superconformal mechanics / S. Bellucci, E. Ivanov, S. Krivonos,
 O. Lechtenfeld // Nucl. Phys. B. 2004. Vol. 684. P. 321.
- [36] Bellucci S. ABC of N = 8, d = 1 supermultiplets / S. Bellucci, E. Ivanov,
 S. Krivonos, O. Lechtenfeld // Nucl.Phys. B. 2004. Vol. 699. P. 226.
- [37] Anabalon A. N = 4 superconformal mechanics as a non linear realization / A. Anabalon, J. Gomis, K. Kamimura, J. Zanelli // JHEP. - 2006. - Vol. 10. -№068.
- [38] Delduc F. The common origin of linear and nonlinear chiral multiplets in N = 4 mechanics / F. Delduc, E. Ivanov // Nucl. Phys. B. - 2007. - Vol. 787. - P. 176.
- [39] Claus P. Black Holes and Superconformal Mechanics / P. Claus, M. Derix, R. Kallosh, J. Kumar, P. Townsend, A. Van Proeyen // Phys. Rev. Lett. - 1998. -Vol. 81. - №4553.
- [40] Gibbons G. Black holes and Calogero models / G. Gibbons, P. Townsend // Phys.
 Lett. B. 1999. Vol. 454. P. 187.
- [41] Michelson J. Superconformal multiblack hole quantum mechanics / J. Michelson,
 A. Strominger // JHEP. 1999. Vol. 09. №005.
- [42] Michelson J. The Geometry of (super)conformal quantum mechanics /
 J. Michelson, A. Strominger // Commun. Math. Phys. 2000. Vol. 213. PP.1-17.
- [43] Ivanov E. New variant of N = 4 superconformal mechanics / E. Ivanov,
 S. Krivonos, O. Lechtenfeld // JHEP. 2003. Vol. 03. №014.

- [44] Bellucci S. New insight into WDVV equation / S. Bellucci, A. Galajinsky,
 E. Latini // Phys. Rev. D. 2005. Vol. 71. №044023.
- [45] Galajinsky A. N = 4 mechanics, WDVV equations and roots / A. Galajinsky,
 O. Lechtenfeld, K. Polovnikov // JHEP. 2009. Vol. 03. №113.
- [46] Galajinsky A. N = 4 superconformal Calogero models / A. Galajinsky,
 O. Lechtenfeld, K. Polovnikov // JHEP. 2007. Vol. 11. №008.
- [47] Galajinsky A. Remark on quantum mechanics with conformal Galilean symmetry
 / A. Galajinsky // Phys. Rev. D. 2008. Vol. 78. №087701.
- [48] Galajinsky A. Particle dynamics on AdS₂ × S² background with two-form flux /
 A. Galajinsky // Phys. Rev. D. 2008. Vol. 78. №044014.
- [49] Galajinsky A. N = 2 superconformal Newton-Hooke algebra and many-body mechanics / A. Galajinsky // Phys. Lett. B. - 2009. - Vol. 680. - P. 510.
- [50] Galajinsky A. Harmonic N = 2 Mechanics / A. Galajinsky, O. Lechtenfeld // Phys. Rev. D. - 2009. - Vol. 80. - №065012.
- [51] Galajinsky A. Remark on quantum mechanics with N = 2 Schrödinger supersymmetry / A. Galajinsky, I. Masterov // Phys. Lett. B. - 2009. - Vol. 675. -P. 116.
- [52] Fedoruk S. OSp(4|2) Superconformal Mechanics / S. Fedoruk, E. Ivanov,
 O. Lechtenfeld // JHEP. 2009. Vol.08. №Я081.
- [53] Fedoruk S. New D(2, 1; α) mechanics with spin variables / S. Fedoruk, E. Ivanov,
 O. Lechtenfeld // JHEP. 2010. Vol. 04. №129.
- [54] Fedoruk S. Supersymmetric Calogero models by gauging / S. Fedoruk, E. Ivanov,
 O. Lechtenfeld // Phys. Rev. D. 2009. Vol. 79. №105015.
- [55] Bellucci S. AdS/CFT equivalence transformation / S. Bellucci, E. Ivanov,
 S. Krivonos // Phys. Rev. D. 2002. Vol. 66. №086001.

- [56] Ivanov E. N = 4 supersymmetric mechanics in harmonic superspace / E. Ivanov,
 O. Lechtenfeld // JHEP. 2003. Vol. 09. №073.
- [57] Delduc F. Gauging N = 4 supersymmetric mechanics / F. Delduc, E. Ivanov // Nucl. Phys. B. - 2006. - Vol. 753. - P. 211.
- [58] Delduc F. Gauging N = 4 supersymmetric mechanics II: (1, 4, 3) models from the (4, 4, 0) ones / F. Delduc, E. Ivanov // Nucl. Phys. B. - 2007. - Vol. 770. - P. 179.
- [59] Galajinsky A. Particle dynamics near extreme Kerr throat and supersymmetry / A. Galajinsky // JHEP. - 2010. - Vol. 11. - №126.
- [60] Heinze M. Isometry group orbit quantization of spinning strings in AdS₃ × S³ / M. Heinze, G. Jorjadze, L. Megrelidze // J. Phys. A. 2015. Vol. 48. №12.
- [61] Frolov S. Static gauge and energy spectrum of single-mode strings in AdS₅ × S⁵
 / S. Frolov, M. Heinze, G. Jorjadze, J. Plefka // J. Phys. A. 2014. Vol. 47. №085401
- [62] Heinze M. Orbit method quantization of AdS₂ superparticle / M. Heinze,
 B. Hoare, G. Jorjadze, L. Megrelidze // J. Phys. A. 2015. Vol. 48. №31
- [63] Hakobyan T. Hidden symmetries of integrable conformal mechanical systems / T. Hakobyan, S. Krivonos, O. Lechtenfeld, A. Nersessian // Phys. Lett. A. - 2010.
 - Vol. 374. - P. 801.
- [64] Hakobyan T. Invariants of the spherical sector in conformal mechanics / T. Hakobyan, O. Lechtenfeld, A. Nersessian, A. Saghatelian // J. Phys. A. 2011.
 Vol. 44. №055205.
- [65] Hakobyan T. The structure of invariants in conformal mechanics / T. Hakobyan,
 D. Karakhanyan, O. Lechtenfeld // Nucl. Phys. B. 2014. Vol. 86. PP. 399-420.
- [66] Galajinsky A. Near horizon black holes in diverse dimensions and integrable models / A. Galajinsky // Phys. Rev. D. 2013. - Vol. 87. - №024023.

- [67] Galajinsky A. Superintegrable models related to near horizon extremal Myers– Perry black hole in arbitrary dimension / A. Galajinsky, A. Nersessian, A. Saghatelian // JHEP. - 2013. - Vol. 06. - №002.
- [68] Orekhov K. Integrable models associated with Myers–Perry–AdS–dS black hole in diverse dimensions / K. Orekhov // J. Geom. Phys. - 2014. - Vol. 86. - P. 467.
- [69] Hietarinta J. Direct Methods for the Search of the Second Invariant / J. Hietarinta // Phys. Rept. - 1987. - Vol. 147. - P. 87.
- [70] Yehia H. New conditional integrable cases of motion of a rigid body with Kovalevskaya's configuration / H. Yehia, A. Elmandouh // J. Phys. A. - 2011. -Vol. 44. - №012001.
- [71] Gillessen S. Monitoring stellar orbits around the Massive Black Hole in the Galactic Center / S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, T. Ott // Astrophys. J. 2009. Vol. 692. PP. 1075-1109.
- [72] Carter B. Global Structure of the Kerr Family of Gravitational Fields / B. Carter
 // Phys. Rev. 1968. Vol. 174. pp. 1559-1571.
- [73] Frolov V. Higher–Dimensional Black Holes: Hidden Symmetries and Separation of Variables / V. Frolov, D. Kubizňák // Class. Quant. Grav. - 2008. - Vol. 25. -№154005.
- [74] Gibbons G. SUSY in the sky / G. Gibbons, R. H. Rietdijk, J. W. van Holten // Nucl. Phys. B. - 1993. - Vol. 404. - pp. 42-64.
- [75] Ngome J. P. Dynamical supersymmetry of spin particle-magnetic field interaction / J. Ngome, P. Horváthy, J. W. van Holten // J. Phys. A. - 2010. - Vol. 43. - №285401
- [76] Walker M. On quadratic first integrals of the geodesic equations for the type {2,2} spacetimes / M. Walker, R. Penrose // Comm. Math. Phys. - Vol. 18. - 1970. - p. 256-274.

- [77] Carter B. Hamilton–Jacobi and Schrödinger separable solutions of Einstein's equations / B. Carter // Comm. Math. Phys. - 1968. - Vol. 10. - pp. 280-310.
- [78] Hartman T. CFT duals for extreme black holes / T. Hartman, K. Murata, T. Nishioka, A. Strominger // JHEP. - 2009.- Vol. 4. - №19.
- [79] Vasudevan M. Particle Motion and Scalar Field Propagation in Myers–Perry Black Hole Spacetimes in All Dimensions / M. Vasudevan, K. Stevens, D. Page // Class. Quant. Grav. - 2005. - Vol. 22. - pp. 1469-1482.
- [80] Gibbons G., Lu H., Page D., Pope C. The General Kerr-de Sitter Metrics in All Dimensions / G. Gibbons, H. Lu, D. Page, C. Pope // J. Geom. Phys. - 2005. - Vol. 53. - pp. 49-73.
- [81] Vasudevan M. Separability of the Hamilton-Jacobi and Klein-Gordon Equations in Kerr-de Sitter Metrics / M. Vasudevan, K. Stevens, D. Page // Class. Quant. Grav. - 2005. - Vol. 22. - pp. 339-352.
- [82] Galajinsky A. On the near-horizon rotating black hole geometries with NUT charges / A. Galajinsky, K. Orekhov // Eur. Phys. J. C. - 2016. - Vol. 76. - P. 477.
- [83] Zaitsev V. F. Handbook of exact solutions for ordinary differential equations /
 V. F. Zaitsev, A. D. Polyanin. CRC Press. 2003. 803 pp.
- [84] Ghezelbash A. Kerr–Bolt spacetimes and Kerr/CFT correspondence /
 A. Ghezelbash // Mod. Phys. Lett. A. 2012. Vol. 27. №1250046.
- [85] Chen W. General Kerr–NUT–AdS metrics in all dimensions / W. Chen, H. Lu,
 C. Pope // Class. Quantum Grav. 2006. Vol. 23. pp. 5323-5340.
- [86] Galajinsky A. N = 2 superparticle near horizon of extreme Kerr–Newman–AdS– dS black hole / A. Galajinsky, K. Orekhov // Nucl. Phys. B. - 2011. - Vol. 850. pp. 339-348.
- [87] Belucci S. N = 2 supersymmetric particle near extreme Kerr throat / S. Belucci,
 S. Krivonos // JHEP. 2011. Vol. 10. №014.

- [88] Galajinsky A. Conformal mechanics inspired by extremal black holes in d = 4 /
 A. Galajinsky, A. Nersessian // JHEP. 2011. Vol. 1111. №135.
- [89] Bellucci S. Action-Angle Variables for the Particle Near Extreme Kerr Throat / S. Bellucci, A. Nersessian, V. Yeghikyan // Mod. Phys. Lett. A. - 2012. - Vol. 27. -№1250191.
- [90] Saghatelian A. Near-horizon dynamics of particle in extreme Reissner-Nordström and Clement-Gal'tsov black hole backgrounds: action-angle variables / A. Saghatelian // Class. Quant. Grav. - 2012. - Vol. 29. - №245018.
- [91] Kostelecky V. Solitonic black holes in gauged N = 2 supergravity / V. Kostelecky,
 M. Perry // Phys. Lett. B. 1996. Vol. 371. pp. 191-198.
- [92] Caldarelli M. Supersymmetry of anti-de Sitter black holes / M. Caldarelli,
 D. Klemm // Nucl. Phys. B. 1999. Vol. 545 pp. 434-460.
- [93] Galajinsky A. Particle dynamics on AdS₂ × S² background with two-form flux /
 A. Galajinsky // Phys. Rev. D. 2008. Vol. 78. №044014.
- [94] Carter B. Killing tensor quantum numbers and conserved currents in curved space
 / B. Carter // Phys. Rev. D. 1977. Vol. 16. pp. 3395-3414.
- [95] Rasmussen J. On hidden symmetries of extremal Kerr-NUT-AdS-dS black holes / J. Rasmussen // J. Geom. Phys. - 2011. - Vol. 61. - pp. 922-926.
- [96] Al Zahrani A. Particle dynamics in weakly charged extreme Kerr throat / A. Al Zahrani, V. Frolov, A. Shoom // arxiv.org: e-print archive. URL: http://arxiv.org/abs/1010.1570.
- [97] Galajinsky A. Harmonic N = 2 mechanics / A. Galajinsky, O. Lechtenfeld // Phys. Rev. D. - 2009. - Vol. 80. - №065012.
- [98] Galajinsky A. Conformal mechanics in Newton-Hooke spacetime / A. Galajinsky // Nucl. Phys. B. - 2010. - Vol. 832. - pp. 586-604.

- [99] Iachello F. Lie Algebras and Applications / F. Iachello. Berlin: Springer, Lect. Notes Phys. 708. - 2006. - 212 pp.
- [100] Ortin T. A note on Lie-Lorentz derivative / T. Ortin // Class. Quant. Grav. -2002. - Vol. 19, Letter to the editor. - pp. L143-L149.
- [101] Alonso-Alberca N. Geometric construction of Killing spinors and supersymmetry algebras in homogeneous spacetimes / N. Alonso-Alberca, E. Lozano-Tellechea, T. Ortin // Class. Quant. Grav. - 2002. - V. 19. - pp. 6009-6024.
- [102] Figueroa-O'Farrill J. M. On the supersymmetries of anti-de Sitter vacua /
 J. M. Figueroa-O'Farrill // Class. Quant. Grav. 1999. Vol. 16. pp. 2043-2055.
- [103] Orekhov K. N = 2 superparticle near horizon of a magnetized Kerr black hole
 / K. Orekhov // J. Geom. Phys. 2016. Vol. 104. pp. 242–245.
- [104] Орехов К. Спиноры Киллинга и суперчастица в пространстве анти-де Ситтера /К. Орехов // Изв. ВУЗов. Физика. - 2014. - Т. 57. - сс. 33–38
- [105] Mohaupt T. Black holes in supergravity and string theory / T. Mohaupt // Class. Quant. Grav. - 2000. - Vol. 17. - pp. 3429-3482.