СВЕДЕНИЯ О РЕЗУЛЬТАТАХ ПУБЛИЧНОЙ ЗАЩИТЫ ДИССЕРТАЦИИ

Диссертационный совет Д 212.267.06, созданный на базе федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет», извещает о результатах состоявшейся 12 марта 2015 года публичной защиты диссертации Фахрутдиновой Елены Данияровны «Получение и исследование физико-химических свойств допированных фотокаталитических материалов на основе диоксида титана» по специальности 02.00.04 — Физическая химия на соискание ученой степени кандидата химических наук.

Время начала заседания: 14.10

Время окончания заседания: 16.45

На заседании диссертационного совета присутствовали 15 из 20 членов диссертационного совета, из них 14 докторов наук по специальности 02.00.04 – Физическая химия:

- 1. Курина Л.Н., председатель диссертационного совета, доктор химических наук, 02.00.04
- 2. Мальков В.С., ученый секретарь диссертационного совета, кандидат химических наук, 02.00.04
 - 3. Восмериков А.В., доктор химических наук, 02.00.04
 - 4. Водянкина О.В., доктор химических наук, 02.00.04
 - 5. Головко А.К., доктор химических наук, 02.00.04
 - 6. Коботаева Н.С., доктор химических наук, 02.00.04
 - 7. Козик В.В., доктор технических наук, 02.00.04
 - 8. Колпакова Н.А., доктор химических наук, 02.00.04
 - 9. Малиновская Т.Д., доктор химических наук, 02.00.04
 - 10. Манжай В.Н., доктор химических наук, 02.00.04
 - 11. Полещук О.Х., доктор химических наук, 02.00.04
 - 12. Сироткина Е.Е., доктор химических наук, 02.00.04
 - 13. Соколова И.В., доктор физико-математических наук, 02.00.04
 - 14. Филимошкин А.Г., доктор химических наук, 02.00.04
 - 15. Чайковская О.Н., доктор физико-математических наук, 02.00.04

Заседание провела председатель диссертационного совета доктор химических наук, профессор Курина Лариса Николаевна.

По результатам защиты диссертации тайным голосованием (результаты голосования: за присуждение ученой степени — 15, против — нет, недействительных бюллетеней — нет) диссертационный совет принял решение присудить Е.Д. Фахрутдиновой учёную степень кандидата химических наук.

Заключение диссертационного совета Д 212.267.06 на базе федерального государственного автономного образовательного учреждения высшего образования

«Национальный исследовательский Томский государственный университет» Министерства образования и науки Российской Федерации по диссертации на соискание ученой степени кандидата наук

аттестационное дело №	
-----------------------	--

решение диссертационного совета от 12.03.2015 г., № 23

О присуждении **Фахрутдиновой Елене Данияровне**, гражданке Российской Федерации, ученой степени кандидата химических наук.

Диссертация «Получение и исследование физико-химических свойств допированных фотокаталитических материалов на основе диоксида титана» по специальности 02.00.04 — Физическая химия, принята к защите 25.12.2014 г., протокол № 18, диссертационным советом Д 212.267.06 на базе федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет» Министерства образования и науки Российской Федерации (634050, г. Томск, пр. Ленина, 36, приказ о создании диссертационного совета № 1986-1419 от 14.11.2008 г.).

Соискатель Фахрутдинова Елена Данияровна, 1987 года рождения.

В 2011 году соискатель окончила государственное образовательное учреждение высшего профессионального образования «Томский государственный университет».

В 2014 году соискатель очно окончила аспирантуру федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет».

Работает в должности инженера-исследователя лаборатории новых материалов и перспективных технологий Сибирского физико-технического института имени академика В.Д. Кузнецова в федеральном государственном автономном образовательном учреждении высшего образования «Национальный исследовательский Томский государственный университет» Министерства образования и науки Российской Федерации.

Диссертация выполнена на кафедре аналитической химии федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет» Министерства образования и науки Российской Федерации.

Научный руководитель – доктор химических наук, **Мокроусов Геннадий Михайлович,** федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет», кафедра аналитической химии, заведующий кафедрой.

Официальные оппоненты:

Емелин Алексей Владимирович, доктор физико-математических наук, федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет», кафедра фотоники, профессор

Козлова Екатерина Александровна, кандидат химических наук, федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук, лаборатория каталитических методов преобразования солнечной энергии, старший научный сотрудник

дали положительные отзывы о диссертации.

Ведущая организация — федеральное государственное бюджетное учреждение науки Байкальский институт природопользования Сибирского отделения Российской академии наук, г. Улан-Удэ, в своём положительном заключении, подписанном Асеевым Денисом Геннадьевичем (кандидат химических наук, лаборатория инженерной экологии, научный сотрудник) и Батоевой Агнией Александровной (доктор технических наук, лаборатория инженерной экологии, заведующая лабораторией), указала, что актуальность диссертационной работы заключается в синтезе, исследовании физико-химических и каталитических свойств допированного диоксида титана, полученного золь-гель методом, одного из востребованных сорбентов и фотокатализаторов. Создание на его основе новых композиционных материалов, активных в видимой области спектра, позволит расширить возможности их использования в фотокаталитических процессах, в том

числе с использованием солнечного излучения. Автором предложена оригинальная методика создания композитов на основе допированного диоксида титана. Доказана композитных материалов полученных перспективность использования фотокаталитических процессах получения водорода и окислительной деструкции биорезистентных органических соединений. Практическая значимость работы заключается в определении зависимостей, связывающих состав, структуру и свойства полученного допированного диоксида титана оптические фотокаталитической активностью, что позволит в дальнейшем осуществлять направленный синтез фотокаталитических систем на основе диоксида титана. В организациях, работы рекомендованы ДЛЯ использования Результаты занимающихся разработкой новых фотокаталитических материалов (Институт катализа им. Г.К. Борескова СО РАН, г. Новосибирск; Институт химической физики им. Н.Н. Семенова РАН, г. Москва и др.). Полученные наноструктурированные видимой области спектра, материалы, важны для разработки активные в энергосберегающих и экологобезопасных технологий очистки природных и сточных вод от токсичных органических загрязнителей; новые материалы перспективны для использования в процессах фотокаталитического получения водорода.

Соискатель имеет 13 опубликованных работ, в том числе по теме диссертации — 13 работ, опубликованных в рецензируемых научных изданиях — 2 (из них 1 статья в журнале, переводная версия которого включена в Web of Science), в сборниках материалов международных и всероссийских научных конференций — 11. Общий объем работ — 4,42 п.л., авторский вклад — 3,21 п.л.

Наиболее значимые научные работы по теме диссертации:

- 1. Фахрутдинова, Е. Д. Получение и изучение нанокомпозитных смешанно-оксидных фотокатализаторов получения водорода / **Е.** Д. Фахрутдинова, А. В. Шабалина, Г. М. Мокроусов // Бутлеровские сообщения. 2013. Т. 35, № 7. С. 155—162. 1 / 0.6 п.л.
- 2. Фахрутдинова, Е. Д. Медьсодержащие фотокатализаторы на основе F-TiO₂ для получения водорода из воды и водно-органических сред / **Е. Д. Фахрутдинова**, А. В. Шабалина, Г. М. Мокроусов, А. Н. Саланов, Дж. Дж. Ву // Журнал неорганической химии. 2014. Т. 59, № 4. С. 445–451. 0.9 / 0.7 п.л. (в переводной версии экурнала: Fakhrutdinova, E. D. Copper containing photocatalyst based on F-TiO₂

for hydrogen production from water and water organic solution / **E. D. Fakhrutdinova**, A. V. Shabalina, G. M. Mokrousov, A. N. Salanov, J. J. Wu // Russian journal of inorganic chemistry. – 2014. – V. 4. – P. 291-297. – 0.9 / 0.7 π.π. – DOI 10.1134/S0036023614040056)

На автореферат поступили 5 положительных отзывов. Отзывы представили: 1. В.К. Иванов, д-р наук, заведующий лабораторией синтеза хим. функциональных материалов и переработки минерального сырья Института общей и неорганической химии им. Н.С. Курнакова РАН, г. Москва, с замечаниями: в автореферате не приведены данные о количественном содержании фтора и азота в фотокатализатора образцах, название коммерческого указано неверно. 2. Г.К. Шурдумов, д-р хим. наук, профессор кафедры неорганической и физической химии Кабардино-Балкарского государственного университета им. Х.М. Бербекова, г. Нальчик, без замечаний. З. Т.Г. Черкасова, д-р хим. наук, проф., директор Института химических и нефтегазовых технологий Кузбасского государственного технического университета имени Т.Ф. Горбачева, г. Кемерово, и А.А. Бобровникова, канд. хим. наук, доцент кафедры химии, технологии наноматериалов Кузбасского неорганических веществ И государственного технического университета имени Т.Ф. Горбачева, г. Кемерово, с вопросами: чем обусловлен выбор разных по физическим и химическим свойствам прекурсоров синтезе прослеживались? при материалов, какие закономерности 4. В.А. Новоженов, д-р хим. наук, проф., заведующий кафедрой неорганической химии Алтайского государственного университета, г. Барнаул, с вопросом: почему не оформлена заявка на патент на разработанную методику синтеза композитов? 5. А.Н. Саланов, канд. хим. наук, старший научный сотрудник Института катализа имени Г.К. Борескова СО РАН, г. Новосибирск, с замечаниями: из работы не ясна степень новизны полученных материалов; в работе не обсуждается механизм влияния допантов на фотокаталитическую активность.

Авторы отзывов отмечают большой объём экспериментальных данных, полученных с помощью современных экспериментальных методов, высокий уровень исследовательской техники, включающей не только получение результатов, но также их обработку и анализ, вклад данной работы в изучение влияния структуры и состава фотокаталитических систем на основе допированного диоксида титана и композитов на его основе.

Выбор официальных оппонентов и ведущей организации обосновывается тем, что А.В. Емелин является признанным специалистом в области исследования материалов, фотоактивных E.A. Козлова является нанокомпозитных области исследования свойств непосредственным В специалистом фотокаталитических систем; Байкальский институт природопользования СО РАН является одним из ведущих научно-исследовательских центров России, в котором работают специалисты, занимающиеся разработкой физико-химических основ и методов охраны окружающей среды и переработки техногенных отходов на базе принципов «зеленой химии» и высокоэффективных каталитических систем.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

 $npe \partial no жен$ синтез и получены результаты исследований физико-химических свойств нанокомпозитов на основе TiO_2 , допированного фтором и азотом;

определено, что термоустойчивость фазы анатаза в составе со-допированных образцов TiO_2 , синтезированных по предложенной в работе методике, увеличивается за счет распределения допантов на поверхности частиц анатаза;

установлено, что в ходе синтеза материала происходит его со-допирование азотом, что приводит к сенсибилизации диоксида титана к фотонам низкой энергии.

Теоретическая значимость исследования обоснована тем, что:

раскрыты основные факторы, приводящие к структурированию диоксида титана в виде анатаза при синтезе по золь-гель технологи, такие как недостаток гидролитического агента (R_F =0,6) и порядок смешивания исходных реагентов;

установлена связь между образованием дефектного состояния Ti^{3+} при фотостимулировании в медьсодержащих композитах и их фотокаталитической активностью; показано, что состояние Ti^{3+} при фотостимулировании образуется за счет собственных дефектов TiO_2 .

определено, что введение допантов (фтора и азота) приводит к расширению спектрального диапазона поглощения ${\rm TiO_2}$ до 550 нм, а их распределение на поверхности позволяет диоксиду титана сохранять полиморфную модификацию анатаз при высокотемпературной термообработке (800 $^{\rm 0}$ C).

Значение полученных соискателем результатов исследования для практики подтверждается тем, что:

npeдставлены методики синтеза и исследования состава, структуры и оптических свойств со-допированных образцов F, N-TiO $_2$ и нанокомпозитов на их основе, активных в фотокаталитических процессах при использовании видимого диапазона излучения;

определены закономерности, полученные при введении допантов F и N, а также Cu_2O и частиц Au в состав TiO_2 , связывающие способ приготовления, химический состав, оптические свойства с фотокаталитической активностью композитов. Полученные результаты могут быть использованы для создания фотокаталитических технологий очистки сточных вод и процессов фотолиза воды.

Рекомендации об использовании результатов диссертационного исследования. Полученные результаты по созданию фотоактивных материалов, выходу водорода, скорости и количеству разложения органических загрязнителей воды при воздействии источника видимого излучения могут быть использованы для создания экологически безопасных технологий очистки сточных вод и процессов фотокаталитического получения водорода, а также в организациях и учреждениях, занимающихся исследованиями и разработками в области физико-химических свойств наноструктурированных оксидных материалов (Институт катализа им. Г.К. Борескова СО РАН, г. Новосибирск; Российский химико-технологический университет им. Д.И. Менделеева, г. Москва; Институт неорганической химии СО РАН, г. Новосибирск; Институт химии и химической технологии СО РАН, г. Красноярск), и в учебном процессе на химическом и физическом факультетах Национального исследовательского Томского государственного университета.

Оценка достоверности результатов исследования выявила:

экспериментальные работы проведены на современном сертифицированном оборудовании, полученные результаты являются воспроизводимыми; данные, полученные разными методами, согласуются между собой;

теория построена на известных, проверяемых фактах и согласуется с опубликованными экспериментальными данными по теме диссертации;

использованы современные методики обработки полученных в ходе исследования данных.

Научная новизна состоит в разработке теоретических и экспериментальных подходов к приготовлению мезопористых наноструктурированных материалов на

основе TiO₂, характеризующихся заданным фазовым составом, размером частиц, термостабильностью за счет локализации допантов на поверхности частиц диоксида титана. Показано, что голученные композиты допированного фтором и азотом TiO₂, содержащие в своем составе Cu₂O и частицы Au, проявляют повышенную каталитическую активность в фоторазложении фенола, красителя метиленового синего И получении водорода ИЗ метанолсодержащих смесей при экспозиции излучением видимого света.

Личный вклад соискателя состоит в: анализе литературы по теме диссертации, участии в постановке цели и задач работы, выборе методик и проведении синтеза образцов допированного диоксида титана, а также получении композитов на его основе, проведении исследований методом УФ-видимой спектроскопии и тестирования фотокаталитической активности, интерпретации данных, полученных различными метфдами, а также количественных расчётов, обобщении результатов, формулировке выводов и написании статей.

Диссертация соответствует п. 9 Положения о присуждении ученых степеней, является научно-квалификационной работой, в которой содержится решение задачи выявления основных факторов, определяющих структуру, фазовый состав, химический состав поверхности и оптические свойства допированного диоксида титана и композитов на его основе а также фотокаталитические свойства, имеющей значение для развития физической химии в области управления свойствами нанокомпозитных материалов.

На заседании 12.03.2015 г. диссертационный совет принял решение присудить Фахрутдиновой Е.Д. учёную степень кандидата химических наук.

При проведении тайного голосования диссертационный совет в количестве 15 человек, из них 14 докторов наук по специальности 02.00.04 – Физическая химия, участвовавших в заседании, из 20 человек, входящих в состав совета, проголосовал: за – 15, против – нет, недействительных бюллетеней – нет.

Председатель

диссертационного совера

Ученый секретарь

диссертационного совета

12.03.2015 г.

Курина Лариса Николаевна

Мальков Виктор Сергеевич