

ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» на диссертационную работу

Храмцова Алексея Михайловича

«Напряженно-деформированное состояние взаимодействующих элементов пьезоактюатора», представленную к защите в диссертационном совете Д 212.267.13, созданном на базе федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет», на соискание учёной степени кандидата физикоматематических наук по специальности 01.02.04 — Механика деформируемого твердого тела

АКТУАЛЬНОСТЬ ТЕМЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

Пьезоактюаторы находят все более широкое применение в различных областях техники и технологий. При работе пьезоактюаторов в быстродействующих высокоточных системах важно соответствие расчетных и реальных параметров. Исследования Храмцова А.М. посвящены изучению динамических режимов работы пьезоактюатора с инерционной нагрузкой. Моделирование напряженно-деформированного состояния пьезокерамических устройств является сложной задачей ввиду анизотропии упругих свойств материла, возникающих в нем пиро-и пьезоэффектов, а также большого разнообразия материалов с разными свойствами у разных производителей. Тематика диссертационной работы

Храмцова А.М. соответствует приоритетному направлению развития науки, технологий и техники и Перечню критических технологий Российской Федерации, утвержденным Указом Президента РФ от 07.07.2011 № 988 и является, безусловно, актуальной.

ЦЕЛЬ ДИССЕРТАЦИОННОЙ РАБОТЫ

Основной целью автора является создание расчетной модели для определения конструктивно-технологических параметров пьезоактю атора для работы в качестве исполнительного элемента в системах прецизионного позиционирования, основанных на пьезодвигателях шагового типа.

В диссертационной работе решаются следующие задачи: 1) разработка околорезонансного взаимодействия одномерной модели элементов пьезоактюатора с учетом различных инерционных нагрузок, позволяющая определять резонансные режимы работы системы при эскизном проектировании; 2) постановка и решение электроупругой задачи деформирования системы взаимодействующих активно элементов конструкции численным моделированием переходных процессов работы пьезоактю атора; 3) верификация разработанных моделей.

СТРУКТУРА И КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

Диссертационная работа содержит 135 страниц, включает 4 главы и список литературы из 68 наименований.

Во введении обосновывается актуальность темы диссертации, изложены цели исследования, практическая значимость и новизна представленных результатов, приведены положения выносимые автором на защиту.

В первой главе выполнен литературный обзор. Проведен анализ тенденций мирового развития разработок и производства пьезоактюаторов. Приведены их основные электромеханические и электрофизические свойства. Проведен анализ существующих математических методов моделирования динамических режимов работы пьезоактюатора. Рассмотрены методы измерений электрических и механических параметров многослойных пьезопакетов.

Во второй главе описывается разработка трехмерной конечно-элементной модели колебательной системы линейного пьезопривода при помощи

программного комплекса Ansys. При помощи данной модели произведен подбор эффективных контактных механических пар конструкции пьезоактю и получены частотные характеристики актюатора при работе на различные инерционные нагрузки.

Третья глава посвящена разработке одномерной математической модели на основании метода электрических аналогий. Произведен расчет состояний колебательной системы линейного пьезопривода при работе на разных режимах и с различной инерционной нагрузкой.

В четвертой главе проводится верификация моделей путем сравнения расчетных и экспериментальных данных. Представлен уникальный испытательный стенд для испытаний режимов работы пьезоактюатора под нагрузкой. Результаты проведенных экспериментальных испытаний показали, что частотные характеристики вибросмещения, полученные по методу конечных элементов в программном комплексе Ansys являются наиболее точными и имеют расхождение с экспериментом в 5–8 %, а одномерная математическая модель на основании метода электрических аналогий имеет расхождение с экспериментом 10–15 %.

Заключение подытоживает результаты диссертационного исследования.

НАУЧНАЯ НОВИЗНА ИССЛЕДОВАНИЯ ДИССЕРТАЦИОННОЙ РАБОТЫ

Материал диссертации охватывает разработанные автором теоретические и научно-практические положения, совокупность которых правомерно классифицировать как решение автором актуальной задачи моделирования напряженно-деформируемых состояний пьезоактюатора при работе на инерционную нагрузку.

Научная новизна отражена в следующих результатах:

- 1. В формулировках математических моделей динамического взаимодействия составных частей корпуса пьезоактю и учитывающих инерционную массу нагрузки.
- 2. В проведенных расчетах напряженно-деформированного состояния взаимодействующих элементов конструкции пьезоактю во всех режимах работы, включая переходные процессы при пуске и остановке системы.

3. В экспериментально подтвержденных результатах моделирования резонансных режимов работы пьезоактюатора под нагрузкой.

ПРАКТИЧЕСКАЯ ЦЕННОСТЬ ДИССЕРТАЦИОННОЙ РАБОТЫ

Разработанные математические модели могут быть использованы для создания различных типономиналов пьезоприводов, начиная с этапа эскизного проектирования. Использование результатов работы позволяет сократить затраты времени и материалов при изготовлении опытных партий образцов, что в значительной степени удешевляет разработку новых изделий. Практическая значимость подтверждается финансовой поддержкой исследований в рамках проекта «Разработка микролинейных пьезоприводов исполнительных устройств космических аппаратов» Федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технического комплекса России на 2014—2020 годы», соглашение о предоставлении субсидии от «23» сентября 2014 г. № 14.578.21.0060, приоритетное направление «Транспортные и космические системы».

РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ РЕЗУЛЬТАТОВ И ВЫВОДОВ ДИССЕРТАЦИОННОЙ РАБОТЫ

Предложенные соискателем решения могут быть применены при разработке систем прецизионного позиционирования на основе многослойных пьезокерамических актюаторов линейного типа российского и зарубежного производства. Результаты работы имеют существенное значение для всех организаций, занимающихся разработкой, производством и эксплуатацией аналогичного оборудования.

ДОСТОВЕРНОСТЬ И ОБОСНОВАННОСТЬ РЕЗУЛЬТАТОВ ДИССЕРТАЦИОННОЙ РАБОТЫ

Обоснованность и корректность физико-математических постановок задач подтверждается применением апробированных численных методов решения, экспериментальных методик и сертифицированного оборудования, а также сравнением полученных результатов с имеющимися экспериментальными

данными. Основные результаты работы апробированы в рецензируемых журналах, на научных конференциях, а также при выполнении проекта в рамках Федеральной целевой программы.

Всего по тематике диссертации опубликовано 17 работ, в том числе 2 статьи в журналах, включенных в Перечень рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, 1 патент Российской Федерации, 3 статьи в зарубежных электронных изданиях, индексируемых Web of Science и Scopus, 1 монография, 10 публикаций в сборниках материалов международных и всероссийской научных, научно-технической и научно-практической конференций и симпозиума.

ЗАМЕЧАНИЯ ПО ДИССЕРТАЦИОННОЙ РАБОТЕ.

В качестве замечаний к работе следует отметить:

- 1. В расчетных моделях и в постановке задачи не учитывается пироэффект. Автору следовало бы указать, в связи с чем исследование не проводилось, в частности, отметить принципиальные моменты и возможные трудности.
- 2. В экспериментальной части не указаны данные (фирма производитель, погрешности измерений и т. д.) об оборудовании входящего в состав испытательного стенда.
- 3. В структуре дисертации не хватает списка использованных сокращений и терминов с определениями, что существенно упростило бы чтение работы. Например, определение «пьезопакет» пересекается с определением «пьезоактюатор» и «актюатор».
- 4. Из текста диссертации не совсем понятна структура пьезоактю тора, так как он состоит из пьезопакетов, которые, в свою очередь, состоят из набора пьезоэлементов, но при этом в одномерной постановке задачи рассматривается пьезоактю тора состоящий из 7-ми пьезоэлементов.

ЗАКЛЮЧЕНИЕ ПО ДИССЕРТАЦИОННОЙ РАБОТЕ

Указанные недостатки не снижают общей положительной оценки работы. Диссертационная работа выполнена на высоком научном уровне, автором получен ряд новых результатов, представляющих интерес для организаций, занимающихся разработкой и производством пьезоприводов. Обоснованность результатов и выводов убеждают в том, что рецензируемая диссертационная работа «Напряженно-деформированное состояние взаимодействующих элементов пьезоактю соответствует требованиям п. 9 «Положения о присуждении ученых степеней», предъявляемым к кандидатским диссертациям, а ее автор, Храмцов Алексей Михайлович, заслуживает присуждения ученой степени кандидата физико-математических наук по специальности 01.02.04 — Механика деформируемого твердого тела.

Работа рассмотрена и обсуждена на заседании научно-технического совета Научно-исследовательского института специального машиностроения МГТУ им. Н.Э. Баумана (протокол № 66 от 21.08.2017).

Заместитель директора

Научно-исследовательского института

специального машиностроения МГТУ им. Н.Э. Баумана,

доктор технических наук

Борзов Андрей Борисович

Доцент кафедры

«Робототехнические системы и мехатроника»,

кандидат технических наук

Бошляков Андрей Анатольевич

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Адрес:105005, Москва, ул. 2-я Бауманская, д. 5, стр.1

http://www.bmstu.ru/

Тел.: +7 (499) 263-63-91

E-mail: <u>bauman@bmstu.ru</u>