СВЕДЕНИЯ О РЕЗУЛЬТАТАХ ПУБЛИЧНОЙ ЗАЩИТЫ ДИССЕРТАЦИИ

Диссертационный совет Д 212.267.13, созданный на базе федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет», извещает о результатах состоявшейся 03 октября 2014 года публичной защиты Ивановича диссертации Филькова Александра «Физико-математическое моделирование возникновения природных пожаров и исследование особенностей сушки, пиролиза и зажигания горючих материалов» по специальности 01.04.14 -Теплофизика и теоретическая теплотехника на соискание ученой степени доктора физико-математических наук.

Время начала заседания: 10-30.

Время окончания заседания: 12-50.

На заседании диссертационного совета присутствовали 22 из 27 членов диссертационного совета, из них 5 докторов наук по специальности 01.04.14 — Теплофизика и теоретическая теплотехника:

- 1. д-р физ.-мат. наук Гришин Анатолий Михайлович председатель диссертационного совета (03.00.16)
- 2. д-р техн. наук Христенко Юрий Федорович ученый секретарь (01.02.04)
- 3. д-р физ.-мат. наук Архипов Валерий Афанасьевич (03.00.16)
- 4. д-р физ.-мат. наук Биматов Владимир Исмагилович (01.02.05)
- 5. д-р физ.-мат. наук Бутов Владимир Григорьевич (01.04.14)
- 6. д-р физ.-мат. наук, Ворожцов Александр Борисович (01.02.05)
- 7. д-р физ.-мат. наук Герасимов Александр Владимирович (01.02.04)
- 8. д-р физ.-мат. наук Глазунов Анатолий Алексеевич (01.02.05)
- 9. д-р физ.-мат. наук Глазырин Виктор Парфирьевич (01.02.04)
- 10. д-р физ.-мат. наук Зелепугин Сергей Алексеевич (01.02.04)

- 11. д-р физ.-мат. наук Крайнов Алексей Юрьевич (03.00.16)
- 12. д-р физ.-мат. наук Кульков Сергей Николаевич (01.02.04)
- 13. д-р техн. наук Люкшин Борис Александрович (01.02.04)
- 14. д-р физ.-мат. наук Макаров Павел Васильевич (01.02.04)
- 15. д-р физ.-мат. наук Прокопьев Вадим Геннадьевич (01.04.14)
- 16. д-р физ.-мат. наук Смоляков Виктор Кузьмич (01.04.14)
- 17. д-р физ.-мат. наук Старченко Александр Васильевич (01.04.14)
- 18. д-р физ.-мат. наук Тимченко Сергей Викторович (01.02.05)
- 19. д-р физ.-мат. наук Черепанов Олег Иванович (01.02.04)
- 20. д-р физ.-мат. наук Шрагер Геннадий Рафаилович (01.02.05)
- 21. д-р физ.-мат. наук Шрагер Эрнест Рафаилович (01.04.14)
- 22. д-р физ.-мат. наук Якутенок Владимир Альбертович (01.02.05)

В связи с тем, что председатель диссертационного совета доктор физикоматематических наук, профессор Гришин Анатолий Михайлович является научным консультантом соискателя, a председателя заместитель диссертационного совета доктор физико-математических наук, профессор Васенин Игорь Михайлович не может присутствовать на заседании по уважительной причине (по болезни), заседание провел член совета, декан физико-технического факультета ТГУ, доктор физико-математических наук Шрагер Эрнст Рафаилович, на которого Томскому приказом ПО государственному университету от 02.10.2014 г. № 682/ОД было возложено выполнение обязанностей председателя диссертационного проведения 03.10.2014 г. заседания по защите диссертации Фильковым А.И.

По результатам защиты диссертации тайным голосованием (результаты голосования: за присуждение ученой степени – 21, против – нет, недействительных бюллетеней – 1) диссертационный совет принял решение присудить А.И. Филькову учёную степень доктора физико-математических наук.

Заключение диссертационного совета Д 212.267.13 на базе федерального государственного автономного образовательного учреждения высшего образования

«Национальный исследовательский Томский государственный университет» Министерства образования и науки Российской Федерации по диссертации на соискание ученой степени доктора наук

аттестационное дело №	
-----------------------	--

решение диссертационного совета от 03.10.2014 г., № 200

О присуждении **Филькову Александру Ивановичу**, гражданину Российской Федерации, ученой степени доктора физико-математических наук.

Диссертация «Физико-математическое моделирование возникновения природных пожаров и исследование особенностей сушки, пиролиза и зажигания горючих материалов» по специальности 01.04.14 — Теплофизика и теоретическая теплотехника принята к защите 27.06.2014 г., протокол № 184, диссертационным советом Д 212.267.13 на базе федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет» Министерства образования и науки Российской Федерации (634050, г. Томск, пр. Ленина, 36, приказ о создании диссертационного совета № 203-161 от 08.02.2008 г.).

Соискатель Фильков Александр Иванович, 1980 года рождения.

Диссертацию на соискание ученой степени кандидата физикоматематических наук «Детерминированно-вероятностная система прогноза лесной пожарной опасности» защитил в 2005 году в диссертационном совете, созданном при государственном образовательном учреждении высшего профессионального образования «Томский государственный университет».

В 2014 году соискатель окончил докторантуру федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет».

Работает в должности доцента кафедры физической и вычислительной механики в федеральном государственном автономном образовательном учреждении высшего образования «Национальный исследовательский Томский

государственный университет» Министерства образования и науки Российской Федерации.

Диссертация выполнена на кафедре физической и вычислительной механики и в лаборатории биогеохимических и дистанционных методов мониторинга окружающей федерального государственного среды автономного образовательного учреждения образования высшего «Национальный Томский исследовательский государственный университет» Министерства образования и науки Российской Федерации.

Научный консультант – доктор физико-математических наук, Гришин Анатолий Михайлович, федеральное государственное автономное образовательное образования «Национальный учреждение высшего исследовательский Томский государственный университет», кафедра физической и вычислительной механики, профессор (в период выполнения соискателем диссертации – кафедра физической и вычислительной механики, заведующий кафедрой).

Официальные оппоненты:

Алексеев Борис Владимирович, доктор физико-математических наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный университет тонких химических технологий имени М.В. Ломоносова», кафедра физики, заведующий кафедрой;

Доррер Георгий Алексеевич, доктор технических наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный технологический университет», кафедра системотехники, заведующий кафедрой;

Рудяк Валерий Яковлевич, доктор физико-математических наук, профессор, федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новосибирский государственный архитектурно-строительный университет (Сибстрин)», кафедра теоретической механики, заведующий кафедрой;

дали положительные отзывы на диссертацию.

федеральное государственное бюджетное Ведущая организация учреждение «Всероссийский ордена «Знак Почета» научно-исследовательский **институт** противопожарной обороны» Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий, г. Балашиха, Московской области, в своем положительном подписанном Хасановым Иреком Равильевичем заключении, технических наук, старший научный сотрудник, заместитель начальника института начальник научно-исследовательского центра профилактики пожаров и предупреждения чрезвычайных ситуаций с пожарами) указала, тема работы А.И. Филькова представляет интерес диссертационной ДЛЯ дальнейшего развития фундаментальной теории пожарной безопасности, так и для совершенствования имеющихся и развития новых численных и экспериментальных методов моделирования теплофизических процессов в природе, вызывающих зажигание растительных горючих материалов (РГМ) и возникновение природных (лесных, степных и торфяных) пожаров; результаты выполненной работы отличаются комплексным междисциплинарным подходом к решению предложенных задач, что существенно расширяет возможности их практических приложений, и, найдут широкое несомненно, применение в организациях, выполняющих исследования возникновения, распространения и экологических последствий природных пожаров; совокупность полученных результатов вносит значительный вклад в познание макросвойств РГМ, необходимых для более глубокого понимания явлений, протекающих при возникновении и распространении природных пожаров и создает предпосылки их новых практических применений.

Соискатель имеет 65 опубликованных работ, в том числе по теме диссертации 53 работы, опубликованных в рецензируемых научных изданиях — 18 (из них 6 статей в журналах, входящих в международные базы научного цитирования Web of Science и Scopus), монографий — 2, патентов Российской Федерации — 1, свидетельств на программу для ЭВМ — 1, статей в научных журналах — 2, публикаций в сборниках трудов всероссийских и международных конференций — 29 (из них 5 публикаций в сборниках трудов зарубежных конференций). Общий объём публикаций — 38.74 п.л., авторский вклад — 20.97 п.л.

Наиболее значимые научные работы по теме диссертации:

- 1. Grishin A.M., **Filkov A.I.** A Deterministic-probabilistic System for Predicting Forest Fire Hazard // Fire Safety Journal. 2011. № 46. Pp. 56-62. 0,82 / 0,60 п.л.
- 2. Кузнецов В.Т., **Фильков А.И.** Воспламенение различных видов древесины потоком лучистой энергии // Физика горения и взрыва. 2011. Т. 47. № 1. С. 74-79. 0,45 / 0,30 п.л.
- 3. **Фильков А.И.** Определение термокинетических постоянных процесса сушки степных горючих материалов // Теплофизика и аэромеханика. 2012. Т. 19, № 6. С. 731-738. 0,45 п.л.
- 4. **Filkov A.I.**, Kuzin A.Ya., Sharypov O.V., Leroy-Cancellieri V., Cancellieri D., Leoni E., Simeoni A., Rein G. A comparative study to evaluate the drying kinetics of Boreal peats from micro to macro scales // Energy & Fuels. 2012. Vol. 26, № 1. P. 349-356. 0,63 / 0,4 п.л.
- 5. Grishin A.M., **Filkov A.I.**, Loboda E.L., Reyno V.V., Kozlov A.V., Kuznetsov V.T., Kasymov D.P., Andreyuk S.M., Ivanov A.I., Stolyarchuk N.D. A Field Experiment on Grass Fire Effects on Wooden Constructions and Peat Layer Ignition // International Journal of Wildland Fire. 2014. Vol. 23(3). P. 445-449. 0,64 / 0,30 π.π.

На автореферат поступили 10 положительных отзывов. Отзывы представили: 1. В.В. Белов, д-р физ.-мат. наук, проф., зав. лабораторией Института оптики атмосферы им. В.Е. Зуева СО РАН, г. Томск, с замечаниями о неудачной формулировке выводов о достоверности полученных теоретических результатов работы в разделе «Общая характеристика работы», а также о необходимости подтверждения результатов внедрения рекомендаций и программного комплекса. 2. Р.Ш. Цвык, канд. физ.-мат. наук, ст. науч. сотр., ведущий научный сотрудник лаборатории распространения волн Института оптики атмосферы им. В.Е. Зуева СО РАН, г. Томск, с замечаниями об отсутствии сравнения полученных термокинетических постоянных сушки степных горючих материалов (СГМ) с данными других авторов; о необходимости расшифровки «ряда приспособлений, которые препятствуют испарению влаги и повышают теплоту испарения воды...» и указания влажности материалов при анализе горения лесных горючих материалов (ЛГМ). 3. Ф.М. Гимранов, д-р техн. наук, проф., зав. кафедрой

промышленной безопасности Казанского национального исследовательского технологического университета, без замечаний. 4. Л.Ю. Катаева, д-р физ.-мат. наук, профессор Нижегородского государственного технического университета им. Р.Е. Алексеева, с замечанием о необходимости пояснить, что понимается под объёмной долей свободной и связанной воды. 5. О.В. Шарыпов, д-р физ.-мат. наук, доц., зам. директора по научной работе Института теплофизики им. С.С. Кутателадзе СО РАН, г. Новосибирск, без замечаний. 6. В.А. Перминов, д-р физ.-мат. наук, доц., профессор кафедры экологии и безопасности жизнедеятельности Национального исследовательского Томского политехнического университета, без замечаний. 7. Д.В. Ершов, канд. техн. наук, зав. лабораторией мониторинга лесных экосистем Центра по проблемам экологии и продуктивности лесов РАН, г. Москва, с замечаниями о необходимости указания основных факторов, влияющих на возникновение лесных пожаров, а также недостатков предшествующей модели оценки вероятности возникновения лесного пожара; о пояснении процедуры согласования шкал классов пожарной опасности (КПО) Нестерова В.Г. и вероятностной методики, и разъяснении отличий параметров в формулах (1) и (6). 8. А.В. Федоров, д-р физ.-мат. наук, проф., зав. лабораторией Института теоретической и прикладной механики им. С.А. Христиановича СО РАН, г. Новосибирск, с замечаниями о необходимости расширения библиографии в автореферате и обоснования однотемпературности модели сушки слоя РГМ; о пояснении, кем были сделаны 5 допущений на стр. 11, при каких условиях получено аналитическое решение, и учитывается ли пиролиз торфа в модели (9-17). 9. Ю.А. Харанжевская, канд. геол.-минерал. наук, зав. лабораторией торфа и экологии Сибирского НИИ сельского хозяйства и торфа Россельхозакадемии, г. Томск, с замечаниями о необходимости обоснования отнесения процесса самовозгорания торфа к антропогенной группе и описания характеристик местности, используемых в программном комплексе прогноза распространения пожара. 10. Д.Ю. Палеев, д-р техн. наук, начальник Новокузнецкого филиала Всероссийского НИИ противопожарной обороны МЧС России, г. Новокузнецк, с замечанием о необходимости пояснения для какой территории, в точке или для площади, осуществляется прогноз пожарной опасности.

Выбор официальных оппонентов и ведущей организации обосновывается тем, что Б.В. Алексеев является признанным специалистом в области теплофизики и физической кинетики; Г.А. Доррер является известным специалистом в области методологии теоретической теплотехники И разработки в области информационных систем; В.Я. Рудяк является специалистом теплофизики и процессов переноса в газах и жидкостях; Всероссийский ордена «Знак Почета» научно-исследовательский институт противопожарной обороны МЧС России является одним из ведущих в мире научно-исследовательских центров, в котором работает большое число специалистов в области теплофизики, теоретической теплотехники и пожарной безопасности.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

проблема, решена крупная научная связанная C численным И экспериментальным моделированием теплофизических процессов в природе, вызывающих зажигание растительных горючих материалов $(P\Gamma M)$ возникновение природных (лесных, степных и торфяных) пожаров, имеющая важное социально-экономическое и хозяйственное значение.

предложен новый теоретико-экспериментальный и детерминированновероятностный подход к оценке вероятности возникновения природных пожаров с использованием как детерминированных методов механики сплошных многофазных сред, так и методов теории вероятности и математической статистики.

Теоретическая значимость исследования обоснована тем, что:

применительно к проблематике диссертации результативно использован детерминированно-вероятностный метод для прогноза лесной, степной и торфяной пожарной опасности в результате одновременного расчета влагосодержания слоя РГМ на основе новых постановок задач о сушке этого слоя и формул для вероятности возникновения природных пожаров с учетом антропогенной нагрузки, действия сухих гроз и условий погоды.

изучены связи: между начальной температурой образцов древесины, её влажностью и временем воспламенения; между температурой поверхности

древесины в момент воспламенения и плотностью теплового потока; между типом РГМ и его скоростью сушки; между плотностью, неоднородностью напочвенного покрова и скоростью распространения низового лесного пожара.

изложены аргументы, подтверждающие, что ни размер образца, ни тип торфа не оказывают значительного влияния на кинетику процесса сушки.

изучены методики определения характеристик генерации горящих частиц, открывающие перспективы для выяснения механизма их образования с последующей разработкой математических моделей этого процесса.

Значение полученных соискателем результатов для практики подтверждается тем, что:

разработан и внедрен комплекс компьютерных программ для мониторинга и прогноза возникновения, распространения И экологических природных пожаров отделом охраны и защиты лесного фонда Департамента области хозяйства Томской И областным лесного государственным специализированным бюджетным учреждением «Томская база авиационной охраны лесов» (акт об использовании результатов №74-02-2820 от 13.05.2014 г.).

разработан и реализован экспериментальный комплекс для физического моделирования низовых лесных и степных пожаров, который существенно расширяет возможности и повышает эффективность исследований пожаров различного типа в лабораторных условиях (Патент РФ №2371220 от 04.05.2008);

создана программа для ЭВМ, позволяющая получать устойчивое решение обратной кинетической задачи по одновременному определению теплоты испарения и предэкспоненциального множителя процесса сушки лесных и степных горючих материалов с погрешностью, пропорциональной погрешности исходных экспериментальных данных (Свидетельство о государственной регистрации программы для ЭВМ №200961120 от 19.02.2009 г.);

разработаны физико-математические модели прогноза возникновения лесных, степных и торфяных пожаров в рамках выполнения 18 грантов и федеральных целевых программ.

Рекомендации об использовании результатов диссертационного исследования. Полученные результаты найдут широкое применение в

организациях, выполняющих исследования и работающих в области мониторинга и прогноза возникновения, распространения и экологических последствий природных пожаров, в частности в Министерстве Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий, Министерстве природных ресурсов и экологии Российской Федерации, Федеральном агентстве лесного хозяйства, подразделениях Авиалесоохраны, областных управлениях лесами, а также в учебном процессе высших учебных заведений.

Оценка достоверности результатов исследования и новизны выявила:

результаты получены на сертифицированном и поверенном оборудовании;

показана воспроизводимость результатов контрольных измерений процессов сушки, пиролиза и горения РГМ, полученных при использовании различных экспериментальных установок;

разработанная методика для определения вероятностей возникновения лесных, степных и торфяных пожаров построена на проверяемых данных и согласуется с результатами ретроспективного анализа горимости лесов;

путем корректной постановки задачи для математического описания сушки слоя торфа и проведения тестовых расчетов *установлено* качественное и количественное совпадение авторских результатов с результатами, представленными в независимых источниках по данной тематике;

использованы современные методики обработки информации: обеспечена необходимая статистическая выборка, найдены доверительные интервалы со значением вероятности 0,95 и получены коэффициенты корреляции признаков не менее 0,8.

Все полученные результаты являются новыми.

Личный вклад соискателя состоит в: самостоятельной роли при постановке цели и задач исследования; выборе методов их решения; разработке методики определения всех членов в формуле прогноза возникновения низовых лесных пожаров; ретроспективной проверке данной методики; постановке задачи о прогнозе торфяной пожарной опасности, сушки слоя торфа, численной реализации математических моделей сушки лесных горючих материалов и слоя торфа;

определении термокинетических постоянных РГМ; непосредственном участии соискателя в разработке методик сбора и анализа горящих частиц; определении температуры и времени задержки зажигания древесины; разработке структуры и состава геоинформационного программного комплекса прогноза возникновения и распространения природных пожаров; доказательстве и обосновании полученных в диссертации результатов; в подготовке публикаций по выполненной работе; в формулировке защищаемых положений. Представление изложенных в работе результатов согласовано с соавторами.

Диссертация соответствует пункту 9 Положения о присуждении ученых степеней, является научно-квалификационной работой, в которой решена крупная научная проблема, связанная с численным и экспериментальным моделированием теплофизических процессов в природе, вызывающих зажигание растительных горючих материалов (РГМ) и возникновение природных (лесных, степных и торфяных) пожаров, имеющая важное социально-экономическое и хозяйственное значение.

На заседании 03.10.2014 г. диссертационный совет принял решение присудить **Филькову А.И.** ученую степень доктора физико-математических наук.

При проведении тайного голосования диссертационный совет в количестве 22 человек, из них 5 докторов наук по специальности 01.04.14 — Теплофизика и теоретическая теплотехника, из 27 человек, входящих в состав совета, проголосовали: 3a-21, против — нет, недействительных бюллетеней — 1.

И.о. председателя

диссертационного совета

Шрагер

Эрнст Рафаилович

Ученый секретарь

диссертационного совета

Христенко

Юрий Федорович

03 октября 2014 г.