УЧЕНОМУ СЕКРЕТАРЮ ДИССЕРТАЦИОННОГО СОВЕТА

г.Томск, 634050, пр. Ленина, 36, федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет»

ОТЗЫВ

на автореферат диссертации Калиновского И.А. «Метод нейросетевого детектирования лиц в видеопотоке сверхвысокого разрешения», представленной на соискание ученой степени кандидат технических наук по специальности 05.13.11 — «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей».

В системах видеонаблюдения все большую актуальность приобретает задача биометрической идентификации личности по изображениям лиц, полученных в неконтролируемых условиях без содействия с системой. В объясняется соображениями общественной первую очередь это безопасности. Непременной составляющей любой системы распознавания лиц является детектор, который работает, как правило, на каждом кадре видеопотока и потребляет основную часть вычислительных ресурсов системы. Количество камер биометрического назначения постоянно растет, как и размеры видеопотока, что вызывает увеличение расходов на дополнительное серверное оборудование. В связи с этим диссертационная работа Калиновского И.А., посвященная разработке метода детектирования лиц с низкими вычислительными затратами в видеопотоке, содержащим сложный структуроподобный фон является актуальной.

Научная новизна данной работы заключается, прежде всего, в разработанном автором методе детектирования лиц с использованием каскадов простых сверточных нейронных сетей. Отличительной особенностью данного метода является многоэтапная процедура принятия решения о присутствии лица в кадре на основе последовательного применения однотипных сверточных нейронных сетей с разряженными связями между нейронными плоскостями. Использование нейронных сетей позволило исключить субъективизм в выборе признакового пространства и достичь приемлемой точности детектирования лиц, а предложенная декомпозиция задачи детектирования на несколько этапов - снизить вычислительную сложность алгоритма за счет отсеивания большей части ложных срабатываний на ранних этапах. Дополнительное снижение вычислительной сложности достигается за счет использования малой глубины сверточных нейронный сетей известной ранее архитектуры с разряженными связями. К заслугам автора следует отнести решение оптимизационной задачи - параметрической минимизации архитектуры сверточных нейронных сетей. К сожалению, из содержания автореферата неясно, каким образом данная оптимизация была выполнена — простым перебором параметров нейронных сетей или применялись научные методы. Не приведены доказательства глобального оптимума.

Практическая значимость работы заключается в том, что полученные результаты позволяют применить каскадирование сверточных нейронных сетей при решении других задач распознавания изображения в режиме реального времени, в том числе в системах военного назначения, например, при детектировании объектов заданного класса на видео, получаемого от беспилотных летательных аппаратов.

Недостатками диссертационной работы являются:

- 1. К сожалению, из содержания автореферата неясно, почему автор предложил именно такие конфигурации нейронных сетей и чем объясняется ограничение каскада тремя стадиями.
- 2. Оптимизацию вычислений двумерной свертки и каскадов классификаторов, судя по содержанию автореферата, можно скорее отнести к инженерным задачам программирования, чем к результатам научных исследований (пункты 3 и 4 положений, выносимых на защиту).

Несмотря на отмеченные недостатки, диссертационная работа удовлетворяет требованиям ВАК, а ее автор Калиновский И.А. заслуживает присуждения ученой степени кандидата технических наук по специальности 05.13.11 — «Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей» за решение актуальной прикладной задачи — разработки нейросетевого метода детектирования лиц, отличающегося применением каскадов сверточных нейронных сетей с низкой вычислительной сложностью, что позволило сократить временные затраты обработки видеопотока в 6 раз по сравнению с известными алгоритмами детектирования лиц с аналогичными показателями полноты и точности.

Старший системный программист ООО «Синезис», 220005, Республика Беларусь, г. Минск, ул. Платонова 20Б кандидат технических наук e-mail: andrey.gusak@svnesis.ru тел. +375(29) 631-24-20

Гусак Андрей Николаевич 12.12.2016 г.

Личную подпись Гусака Андрея Николаевича заверяю.

Юрисконсульт

С.М. Евец

12.12. 206r.