ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА

на диссертацию Мурзашева Аркадия Ислибаевича «Электронное строение, оптические спектры и идентификация фуллеренов и углеродных нанотрубок с сильным межэлектронным взаимодействием в модели Хаббарда», представленную на соискание ученой степени доктора физико-математических наук по специальности 01.04.07 —Физика конденсированного состояния

Диссертационная работа А. И. Мурзашева посвящена исследованию электронного строения фуллеренов и углеродных нанотрубок (УНТ). На основе этих материалов уже создано немало устройств современной микро- и оптоэлектроники, и получены новые композиционные материалы, способные выдерживать воздействие экстремальных условий, в частности, сильных внешних полей.

Электронное строение фуллеренов и УНТ определяется аллотропной формой углерода с sp^2 -гибридизацией. Гибридизация трех валентных электронов приводит к образованию сильных связей, которые и формируют геометрическую структуру ЭТИХ соединений. Четвертый, негибридизированный, электрон, который частично локализован, определяет все электропроводящие и оптические свойства системы, так как граница между вакантными и заполненными электронными состояниями формируется состояниями именно этих, так называемых π-электронов. Знание энергетического спектра л-электронной подсистемы фуллеренов и УНТ очень важно именно для практического применения этих систем.

Поскольку π -электроны являются частично локализованными, то для их изучения применяют приближение сильной связи, в рамках которого, с учетом только перескоков электронов с узла на узел, и вычисляются обычно энергетические спектры фуллеренов и УНТ. В частности, на основе таких расчетов группа Дресселхауз вывела правило, что УНТ хиральности (n,m) по типу проводимости являются металлами, если разность хиральных индексов n-m кратна трем, и полупроводниками — в противоположном случае. Однако

экспериментальные данные такую жесткую зависимость типа проводимости от индексов хиральности не всегда подтверждают. По мнению автора рассматриваемого диссертационного исследования, это связано с тем, что расчеты энергетического спектра УНТ и фуллеренов группы Дресселхауз и других исследователей были выполнены без учета внутриузельного кулоновского взаимодействия π -электронов. Хотя, согласно последним данным, внутриузельное кулоновское взаимодействие в углеродных системах с sp^2 -гибридизацией достигает значений порядка 10 эВ. Таким образом, диссертационная работа А. И. Мурзашева «Электронное строение, оптические спектры и идентификация фуллеренов и углеродных нанотрубок с сильным межэлектронным взаимодействием в модели Хаббарда», в которой исследуются электронные свойства фуллеренов и УНТ с учетом сильного (до 10 эВ) кулоновского взаимодействия электронов на одном узле, является несомненно актуальной как в теоретическом, так и в практическом плане.

Диссертационная работа состоит из введения, основной части, включающей пять глав, заключения, списка литературы из 143 литературных источников и одного приложения. Она изложена на 256 страницах и содержит 124 иллюстрации.

Во введении обоснована актуальность проведенного в диссертационной работе исследования, сформулированы цель работы и задачи, решение которых позволит достичь ее, обоснованы научная новизна и практическая значимость полученных результатов, а также приведены основные положения, выносимые на защиту.

Первая глава посвящена обзору литературы по теме диссертации. Приведены основные сведения о геометрической структуре фуллеренов и УНТ и существующие в настоящее время представления об их электронном строении и оптических свойствах. Анализ экспериментальных и теоретических работ, выполненный автором в настоящей главе, приводит к выводу о необходимости изучения электронных свойств фуллеренов и УНТ с учетом сильного кулоновского взаимодействия. Именно поэтому в качестве модельного гамильтониана для описания π -электронной подсистемы исследуемых

соединений берется гамильтониан Хаббарда, который наиболее корректно описывает такие системы. Подробно описывается модель Хаббарда и обосновывается использование приближения статических флуктуаций.

Во второй главе диссертационной работы, в рамках выбранных автором модели и приближения, получены энергетические спектры фуллеренов С₆₀, C_{70} , C_{72} , C_{74} . Обнаружено, что сильное кулоновское взаимодействие расщепляет каждый энергетический уровень на два подуровня, которые отличаются по энергии друг от друга на величину того же порядка, что и кулоновский интеграл в модели Хаббарда. Как следствие, и энергетический спектр рассматриваемых систем разбивается на две группы уровней, называемых «верхней» и «нижней» хаббардовскими подзонами. Оказывается, что «верхняя» подзона вакантна, а «нижняя» полностью заполнена. Такое заполнение энергетических уровней системы приводит к тому, что оптическое поглощение происходит за счет переходов электронов с «нижней» в «верхнюю» хаббардовские подзоны. На основе полученных энергетических спектров и соответствующих правил отбора, в приближении молекулярных моделируются спектры оптического поглощения фуллеренов C_{60} , C_{70} , C_{72} , C_{74} . Достигнуто хорошее качественное согласие теоретических спектров с экспериментальными данными, что говорит об адекватности выбранного в диссертации подхода к изучению электронного строения исследуемых систем.

В третьей главе диссертационной работы приведены результаты расчетов энергетических спектров фуллеренов C_{76} , C_{80} , C_{82} и эндоэдральных комплексов на их основе. Согласно полученным результатам, в этих системах имеет место такая же перестройка энергетических спектров, как и для фуллеренов, изученных в главе 2. СОП, рассчитанные на основе полученных энергетических спектров, находятся в хорошем качественном согласии с экспериментальными данными. Однако имеет место небольшое расхождение в положениях полос поглощения, что легко объясняется модельным характером расчетов и допущениями, принятыми при формулировке модели

Хаббарда. Особо следует отметить, что в данной главе предложен метод, который позволяет по СОП идентифицировать изомеры фуллеренов, что было хорошо продемонстрировано на примере эндоэдрального комплекса $Sm@C_{76}$.

В четвертой главе автором изучаются кластеры УНТ хиральности (5,5), состоящие из конечного числа атомов. Полученные для конечных УНТ (кластеров, состоящих из 30, 50, 70, 90 и 190 атомов) результаты демонстрируют перестройку такую же энергетического обусловленную учетом кулоновского взаимодействия, как и в фуллеренах. При этом, с ростом числа атомов в кластере, щель между «нижней» и «верхней» хаббардовскими подзонами становится равной $\Delta = U - W$, (W-) ширина хаббардовской подзоны, U- интеграл кулоновского отталкивания в модели Хаббарда), а сама ширина хаббардовской подзоны стремится к W = 6B (здесь B – интеграл перескока модели Хаббарда). В этом случае оказывается, что УНТ хиральности (5,5), которые, согласно результатам группы Дресселхауз, по типу проводимости должны быть металлами, являются полупроводниками с щелью ~ 1 эВ. На основе этого в рассматриваемой главе делается вывод, что «правило кратности трем», сформулированное группой Дресселхауз, не работает в системах с сильным внутриузельным кулоновским взаимодействием.

Кроме этого, в главе 4 исследуется средняя энергия, приходящаяся на атом, в зависимости от числа атомов в кластере. Получен, на мой взгляд, значимый и красивый результат, согласно которому, средняя энергия на атом имеет максимальное значение для кластеров в 60–70 атомов. Следовательно, когда кластер достигает числа атомов, близкого к 60–70, трубке хиральности (5,5) становится энергетически выгодно сворачиваться в фуллерен с таким же числом атомов. Если же в процессе синтеза, который идет существенно неравновесно, число атомов в кластере преодолеет это значение, то УНТ будет расти неограниченно, пока есть внешние условия для синтеза, или до тех пор, пока не встретит препятствие. Отметим, что этот факт подтвержден экспериментально.

В пятой главе диссертации приведены энергетические спектры бесконечных УНТ хиральностей (5,5), (10,0), (9,0), (12,0), (15,0), (11,9), (12,8), также полученные в рамках модели Хаббарда в приближении статических флуктуаций. Обнаружено, что все изученные УНТ, независимо от индексов хиральности, в противоречие с «правилом кратности трем», являются полупроводниками с щелью ~ 1 эВ. Эти результаты получены с учетом перескоков электронов на соседние узлы. Если же учесть перескоки более дальние, чем на соседние узлы, то величина щели уменьшается до значений ~ 0.01 эВ. Это, по всей видимости, и имеет место в УНТ хиральности (9,0), (12,0), (15,0), которые, в соответствии с «правилом кратности трем», по типу проводимости должны быть металлами.

Наконец, в этой же главе на основе энергетических спектров перечисленных выше УНТ смоделированы их СОП. В частности, получена кривая СОП для макроскопического образца УНТ, состоящего из трубок хиральностей (10,10)-44 %, (11,9)-30 % и (12,8)-20 %, которая на хорошем качественном уровне совпадает с экспериментальной кривой, полученной для образцов УНТ с диметром ~ 1.35 нм. Согласно работе [Cowley J. M. et al. Electron nano-diffraction study of carbon single-walled nanotube ropes // Chem. Phys. Lett. $-1997.-Vol.\ 265.-P.\ 379-384.$], реальные образцы УНТ диаметром ~ 1.35 нм имеют именно такой состав.

В Заключении автор суммирует основные результаты и делает выводы. В Приложении \mathbf{A} приводятся формулы, полученные в процессе вычисления средних чисел заполнения π -электронами узлов в случае их избытка или недостатка в кластерах УНТ, состоящих из конечного числа атомов.

Достоверность результатов, полученных в рассматриваемой диссертации, определяется корректной постановкой задач, их физической обоснованностью, применением современных апробированных методов расчета, и хорошим качественным согласием полученных результатов с соответствующими экспериментальными данными.

В диссертации впервые предложена теория электронного строения углеродных наноматериалов с учетом сильного хаббардовского

взаимодействия электронов. Интерес к такому подходу связан с тем, что системы с сильной корреляцией демонстрируют ряд интересных, не присущих системам, свойств, В частности, высокотемпературную другим сверхпроводимость в купратах La_{2-x}Ba_xCuO4 и YBa₂Cu₃O_{7-x}, которую удалось описать именно в рамках модели Хаббарда. Таким образом, научная новизна диссертации определяется именно тем, что в ней впервые применена модель Хаббарда для исследования фуллеренов и УНТ, что позволило выявить физические механизмы, отвечающие за уникальность их электронной противоречий между снять экспериментальными структуры, И ряд и теоретическими результатами исследований, касающихся электронных и оптических свойств данных материалов. Этим и определяется теоретическая и практическая значимость данной работы.

Диссертационная работа Мурзашева А. И. имеет и некоторые недостатки, из которых можно выделить следующие:

- 1. Следовало бы провести сравнение полученных результатов с аналогичными результатами, полученными с помощью других теоретических подходов и методов.
- 2. Хотелось бы более подробного анализа полученных теоретических спектров оптического поглощения для различных нанотрубок и фуллеренов в сравнении с имеющимися экспериментальными данными автор это делает в своей работе, но слишком обще, без разбора каждой полосы поглощения, оценок погрешности и отклонений от результатов экспериментов.
- 3. Одним из наиболее значимых выводов работы является вывод о том, что все идеальные однослойные углеродные нанотрубки являются полупроводниками с шириной щели от 0.01 до 1 эВ. Мне, много лет занимающемуся экспериментальным исследованием электропроводности углеродных наноструктур, хотелось бы увидеть в диссертационной работе более детальное сравнение теоретических выводов с экспериментальными исследованиями, которых существует огромное количество.

4. В диссертации и автореферате есть несогласованные и незаконченные предложения: стр. 9 «...образуются или фуллерены и углеродные нанотрубки»; стр. 11 «УНТ и найти зависимость средней энергии, приходящейся на атом, от числа «избыточных» электронов.»; стр. 58 «..., но только он один удовлетворяет вышеупомянутому ПИП,...(второе «он» лишнее)»; стр. 231 «...с учетом Необходимость...(по-видимому часть предложения после «с учетом» потеряна)».

Разумеется, указанные недостатки не уменьшают научной значимости проведенного А. И. Мурзашевым исследования, и сама диссертационная работа представляет собой законченное исследование, написанное строгим научным языком и хорошо иллюстрированное. Положения, выносимые на защиту, и результаты исследования являются новыми и научно обоснованными.

Автореферат и публикации по теме диссертации в полной мере отражают основные положения данного исследования. Полученные в работе результаты и выводы опубликованы в научных журналах, входящих в международные базы Scopus / Web of Science (26 статей, в том числе 19 статей в журналах, рекомендованных ВАК РФ, и входящих в базу данных Scopus / Web of Science). Апробация результатов диссертационной работы проводилась на многих научных конференциях, в том числе международных.

Полученные результаты можно рекомендовать для использования в научных коллективах, исследующих или синтезирующих фуллерены и УНТ: в Московском государственном университете имени М. В. Ломоносова, Национальном исследовательском центре «Курчатовский институт», Институте проблем химической физики РАН, Петербургском институте ядерной физики им. П. Б. Константинова РАН, Физико-техническом институте им. А. Ф. Иоффе РАН, Институте неорганической химии им. А. В. Николаева СО РАН, Институте катализа им. Г. К. Борескова СО РАН, Институте физики прочности и материаловедения СО РАН, Национальном исследовательском Томском государственном университете — в Сибирском физико-техническом институте им. акад. В. Д. Кузнецова и в других образовательных и научных учреждениях.

Диссертация «Электронное строение, оптические спектры идентификация фуллеренов углеродных нанотрубок И сильным межэлектронным взаимодействием в модели Хаббарда» на соискание ученой степени доктора физико-математических наук по специальности 01.04.07 -Физика конденсированного состояния представляет собой вполне завершенную научно-квалификационную работу на актуальную тему и соответствует требованиям п. 9 «Положения о присуждении ученых степеней». утвержденного постановлением Правительства Российской Федерации от 24 сентября 2013 г. № 842 (в редакции от 28 августа 2017 г.), а ее автор – Мурзашев Аркадий Ислибаевич – заслуживает присуждения ученой степени доктора физико-математических наук по специальности 01.04.07 – Физика конденсированного состояния.

Официальный оппонент

заведующий лабораторией физики низких температур Федерального государственного бюджетного учреждения науки Института неорганической химии им. А. В. Николаева Сибирского отделения Российской академии наук (630090, г. Новосибирск, пр. Академика Лаврентьева, 3; (383) 330-94-90; niic@niic.nsc.ru; http://www.niic.nsc.ru, доктор физико-математических наук (02.00.04 — Физическая химия), профессор

Романенко Анатолий Иванович

17 сентября 2018 г.

Подпись А. И. Романенко удостоверяю

Ученый секретарь ИНХ СО РАИ

доктор химических наук

О. А. Герасько