СВЕДЕНИЯ О РЕЗУЛЬТАТАХ ПУБЛИЧНОЙ ЗАЩИТЫ ДИССЕРТАЦИИ

Диссертационный совет Д 212.267.12, созданный на базе федерального государственного автономного образовательного учреждения образования «Национальный исследовательский Томский государственный университет», извещает о результатах состоявшейся 12 февраля 2020 года публичной защиты диссертации Сидоровой Екатерины Филипповны на тему «Оценивание состояний, параметров распределения и длительности мертвого обобщенном синхронном потоке событий порядка» второго по специальности 05.13.01 – Системный анализ, управление и обработка информации (в отраслях информатики, вычислительной техники и автоматизации) на соискание ученой степени кандидата физико-математических наук.

Присутствовали 15 из 21 члена диссертационного совета, из них 8 докторов наук по специальности 05.13.01 — Системный анализ, управление и обработка информации (в отраслях информатики, вычислительной техники и автоматизации) (физико-математические науки):

1. Горцев А. М., доктор технических наук, профессор, председатель диссертационного совета, 05.13.01 (техн. науки);

2. Тарасенко П. Ф., кандидат физико-математических наук, доцент, ученый секретарь диссертационного совета, 05.13.01 (физ.-мат. науки);

3. Васильев В. А., доктор физико-математических наук, профессор,

05.13.01 (физ.-мат. науки);

4. Воробейчиков С. Э., доктор физико-математических наук, доцент,

05.13.01 (физ.-мат. науки);

5. Дмитренко А. Г., доктор физико-математических наук, профессор,

05.13.01 (физ.-мат. науки);

6. Домбровский В. В., доктор технических наук, профессор,

05.13.01 (техн. науки);

7. Китаева А. В., доктор физико-математических наук, 05.13.01 (физ.-мат. науки);

8. Кошкин Г. М., доктор физико-математических наук, профессор,

05.13.01 (физ.-мат. науки);

9. Лившиц К. И., доктор технических наук, профессор, 05.13.01 (техн. науки);

10. Матросова А. Ю., доктор технических наук, профессор,

05.13.01 (техн. науки);

11. Моисеева С. П., доктор физико-математических наук, профессор,

05.13.01 (физ.-мат. науки);

12. Рожкова С. В., доктор физико-математических наук, доцент,

05.13.01 (физ.-мат. науки);

13. Смагин В. И., доктор технических наук, профессор, 05.13.01 (техн. науки);

14. Удод В. А., доктор технических наук, профессор, 05.13.01 (техн. науки);

15. Шумилов Б. М., доктор физико-математических наук, профессор,

05.13.01 (физ.-мат. науки).

Заседание провел председатель диссертационного совета доктор технических наук, профессор Горцев Александр Михайлович.

По результатам защиты диссертации тайным голосованием (результаты голосования: за присуждение ученой степени — 15, против — нет, недействительных бюллетеней — нет) диссертационный совет принял решение присудить Е. Ф. Сидоровой ученую степень кандидата физико-математических наук.

Заключение диссертационного совета Д 212.267.12, созданного на базе федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет» Министерства науки и высшего образования Российской Федерации, по диссертации на соискание ученой степени кандидата наук

атт	естационное дело .	Nō	 					
	######################################		 10	02	2020	N.C.	222	

решение диссертационного совета от 12.02.2020 № 222

О присуждении **Сидоровой Екатерине Филипповне**, гражданину Российской Федерации, ученой степени кандидата физико-математических наук.

Диссертация «Оценивание состояний, параметров распределения и длительности мертвого времени в обобщенном синхронном потоке событий второго порядка» по специальности 05.13.01 - Системный анализ, управление и обработка информации (в отраслях информатики, вычислительной техники и автоматизации) принята к защите 11.12.2019 (протокол заседания № 220) диссертационным советом Д 212.267.12, созданным на базе федерального государственного автономного образовательного учреждения высшего Томский государственный образования «Национальный исследовательский университет» Министерства науки и высшего образования Российской Федерации (634050, г. Томск, пр. Ленина, 36, приказ о создании диссертационного совета №105/нк от 11.04.2012).

Соискатель Сидорова Екатерина Филипповна, 1995 года рождения.

В 2019 году соискатель окончила федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет».

С 01.09.2019 соискатель очно обучается в аспирантуре федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет».

Работает в должности программиста отдела программного обеспечения федерального государственного автономного образовательного учреждения высшего

образования «Национальный исследовательский Томский государственный университет» Министерства науки и высшего образования Российской Федерации.

Диссертация выполнена на кафедре прикладной математики федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский Томский государственный университет» Министерства науки и высшего образования Российской Федерации.

Научный руководитель — доктор физико-математических наук, **Нежельская Людмила Алексеевна**, федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский государственный университет», кафедра прикладной математики, профессор.

Официальные оппоненты:

Дудин Александр Николаевич, доктор физико-математических наук, профессор, Белорусский государственный университет, научно-исследовательская лаборатория прикладного вероятностного анализа, заведующий лабораторией;

Гудкова Ирина Андреевна, кандидат физико-математических наук, доцент, федеральное государственное автономное образовательное учреждение высшего образования «Российский университет дружбы народов», кафедра прикладной информатики и теории вероятностей, доцент

дали положительные отзывы на диссертацию.

Ведущая организация – Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В. А. Трапезникова Российской наук, г. Москва, в своем положительном отзыве, подписанном Добровидовым Александром Викторовичем (доктор физико-математических наук, лаборатория № 38 «Управления по неполным данным», главный научный сотрудник) и Фархадовым Маисом Паша оглы (доктор технических наук, лаборатория № 17 «Автоматизированных систем массового обслуживания и обработки сигналов», главный научный сотрудник, заведующий лабораторией) указала, что усложнение структуры цифровых систем интегрального обслуживания, развитие спутниковых, мобильных и компьютерных сетей послужило стимулом к рассмотрению дважды событий стохастических потоков качестве математических моделей информационных потоков в реальных телекоммуникационных и информационно-

вычислительных сетях связи. Одним из факторов, существенно влияющих на качество оценивания, выступает мертвое время регистрирующих приборов, порождаемое каждым зарегистрированным событием. Наступившие в течение периода мертвого времени события исходного потока становятся недоступны для наблюдения. Е. Ф. Сидоровой для обобщенного синхронного потока событий второго порядка аналитически решены задачи: оптимального оценивания состояний потока методом максимума апостериорной вероятности и оценивания распределения в коррелированном и рекуррентном потоках методом моментов при доступности наблюдению всех событий потока; оптимального оценивания состояний потока методом максимума апостериорной вероятности и оценивания периода ненаблюдаемости в коррелированном и рекуррентном потоках методом моментов при наличии в модели непродлевающегося мертвого времени фиксированной длительности. Результаты исследования имеют значения для развития теории дважды событий. Разработанные стохастических ПОТОКОВ алгоритмы процедуры оценивания могут быть применены при решении задач проектирования и последующего анализа автоматизированных информационно-вычислительных систем, компьютерных и спутниковых сетей связи, адаптации математических моделей к информационным потокам сообщений, а также обработки результатов физических экспериментов. Полученные результаты могут быть рекомендованы для использования в научно-исследовательских институтах и проектных организациях, исследованием информационно-телекоммуникационных занимающихся систем и сетей с функционирующими в них случайными потоками событий.

Соискатель имеет 16 опубликованных работ, в том числе по теме диссертации опубликовано 13 работ, из них в рецензируемых научных изданиях опубликовано 2 работы (обе работы опубликованы в научных журналах, входящих в Web of Science), в прочем научном журнале опубликована 1 работа, в сборниках материалов конференций, представленных в зарубежных научных изданиях, входящих в Scopus и / или Springer, опубликовано 2 работы; в сборниках материалов международных и всероссийской с международным участием научных конференций опубликовано 8 работ. Общий объем работ — 6,53 а.л., авторский вклад — 3,21 а.л.

В диссертации отсутствуют недостоверные сведения об опубликованных соискателем ученой степени работах, в которых изложены основные научные результаты диссертации.

Наиболее значительные работы по теме диссертации, опубликованные в журналах, включенных в Перечень рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук:

1. Нежельская Л. А. Оптимальная оценка состояний обобщенного синхронного потока событий второго порядка в условиях неполной наблюдаемости / Л. А. Нежельская, **Е. Ф. Сидорова** // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. — 2018. — № 45. — С. 30—41. — DOI: 10.17223/19988605/45/4. — 0,78 / 0,39 а.л.

Web of Science: Nezhel'skaya L. A. Optimal estimate of the states of a generalized synchronous flow of second-order events under conditions of incomplete observability / L. A. Nezhel'skaya, **E. F. Sidorova** // Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. – 2018. – № 45. – P. 30–41.

2. Нежельская Л. А. Оценка длительности непродлевающегося мертвого времени в коррелированном обобщенном синхронном потоке второго порядка / Л. А. Нежельская, **Е. Ф. Сидорова** // Вестник Томского государственного университетета. Управление, вычислительная техника и информатика. — 2019. — № 48. — С. 21–30. — DOI: 10.17223/19988605/48/3. — 0,6 / 0,3 а.л.

Web of Science: Nezhel'skaya L. A. Estimation of the unextendable dead time duration in correlated synchronous generalized flow of the second order / L. A. Nezhel'skaya, **E. F. Sidorova** // Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie vychislitelnaja tehnika i informatika − Tomsk State University Journal of Control and Computer Science. − 2019. − № 48. − P. 21–30.

Публикации в сборниках материалов конференций, представленных в зарубежных научных изданиях, входящих в Scopus и / или Springer:

3. Nezhelskaya L. Optimal Estimation of the States of Synchronous Generalized Flow of Events of the Second Order Under Its Complete Observability / L. Nezhelskaya,

E. Sidorova // Communications in Computer and Information Science. – 2018. – Vol. 912: Information Technologies and Mathematical Modelling. Queueing Theory and Applications: Selected Papers of the 17th International Conference ITMM 2018, WRQ 2018. Tomsk, Russia, September 10–13, 2018. – P. 157–171. – 0,87 / 0,44 а.л. (*Scopus*).

4. Nezhelskaya L. Estimation of the Probability Density Parameters of the Interval Duration Between Events in Correlated Synchronous Generalized Flow of the Second Order / L. Nezhelskaya, M. Pagano, **E. Sidorova** // Communications in Computer and Information Science. — 2019. — Vol. 1109: Information Technologies and Mathematical Modelling. Queueing Theory and Applications: Revised Selected Papers of the 18th International Conference ITMM 2019. Saratov, Russia, June 10–13, 2019. — P. 202–216. — 0,97 / 0,49 а.л. (*Springer*).

На автореферат поступило 6 положительных отзывов. Отзывы представили: 1. Д. В. Ефросинин, д-р физ.-мат. наук, ассоц. проф., заместитель директора Института стохастики Университета Иоганна Кеплера, г. Линц, Австрия, с замечаниями: следовало уже в разделе «Актуальность работы» дать определение для обобщенного синхронного потока событий второго порядка; в разделе «Научная новизна...» было бы правильным вместо алгоритмов указывать результаты, представленные в виде теорем; обозначения для теоретических и выборочных моментов следовало бы ввести до описания содержания глав диссертации. 2. М. А. Маталыцкий, д-р физ.-мат. наук, проф., профессор кафедры фундаментальной и прикладной математики Гродненского государственного им. Янки Купалы, Республика Беларусь, без университета 3. Меликов А. З. о., д-р техн. наук, проф., заведующий лабораторией теории телетрафика Института систем управления НАН Азербайджана, без замечаний. 4. М. Пагано, PhD, ассоциированный профессор факультета информационной инженерии Университета г. Пизы, Италия, с замечанием: было бы интересно сравнить модель обобщенного синхронного потока событий второго порядка с похожими моделями, такими как ММРР и ІРР. 5. О. М. Тихоненко, д-р техн. наук, проф., профессор Факультета Математики и Естественных Наук (Школа Точных Наук) Университета Кардинала Стефана Вышинского в Варшаве, г. Варшава, Польша, с замечанием: на с. 9 в предложении «Автор лично участвовал

в выводе аналитических выражений и формул...» правильнее было бы сказать «участвовала». 6. **Цициашвили Г. Ш.**, д-р физ.-мат. наук, проф., главный научный научно-исследовательской группы вероятностных методов Института прикладной ДВО системного анализа математики PAH, г. Владивосток, с вопросами: нельзя ли было вывести полученные в диссертации в символьном виде формулы с помощью пакета Mathematica? в чем преимущества метода моментов применительно к рассмотренной в диссертации задаче?

В отзывах указывается, что в настоящее время исследования дважды стохастических потоков событий являются наиболее актуальными ввиду развития сетей связи и совершенствования систем передачи информации. Системы массового обслуживания с входящими дважды стохастическими потоками позволяют математически наиболее точно описать реальные сложные объекты. Различные «экзотические» модели становятся все более востребованными при анализе и моделировании информационных потоков. Е. Ф. Сидоровой впервые обобщенного построена математическая модель дважды стохастического синхронного потока событий второго порядка в условиях отсутствия мертвого времени и в условиях наличия мертвого времени фиксированной длительности; представлены соотношения для вычисления апостериорной вероятности состояний обобщенного синхронного потока второго порядка в условиях его полной наблюдаемости; получены оценки параметров плотности вероятности длительности интервала между событиями коррелированного обобщенного синхронного потока второго порядка; выведены оценки состояний потока и плотности вероятности длительности мертвого времени в обобщенном синхронном потоке событий второго порядка в условиях его частичной наблюдаемости. Исследование вносит вклад в развитие теории стохастических потоков событий, способствует дополнению теоретических и практических положений теории. Разработанные алгоритмы могут быть полезны при рассмотрении многих прикладных задач.

Выбор официальных оппонентов и ведущей организации обосновывается тем, что А. Н. Дудин является известным высококвалифицированным специалистом-

математиком в области теории массового обслуживания при исследовании телекоммуникационных сетей и распределенных баз данных с помощью моделей систем массового обслуживания; И. А. Гудкова является высококвалифицированным специалистом-математиком в области теории массового обслуживания (и ее приложений) и математической теории телетрафика; в Институте проблем управления им. В. А. Трапезникова РАН работают ведущие специалисты, успешно занимающиеся исследованиями различных систем и сетей массового обслуживания (в том числе с входящими дважды стохастическими потоками событий) и статистической обработкой потоков случайных событий.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований получены следующие новые научные результаты:

впервые построена математическая модель обобщенного синхронного дважды стохастического потока событий второго порядка;

решена задача, разработан и программно реализован алгоритм оптимального оценивания состояний потока в условиях отсутствия мертвого времени с использованием метода максимума апостериорной вероятности в качестве решающего правила;

решена задача и программно реализована процедура оценивания параметров плотности вероятности значений длительности интервала между событиями потока при его полной наблюдаемости с использованием метода моментов;

разработан алгоритм аппроксимации реального трафика обобщенным синхронным потоком событий второго порядка при доступности наблюдению всех моментов поступления пакетов данных;

решена задача, разработан и программно реализован алгоритм оптимального оценивания состояний потока в условиях непродлевающегося мертвого времени фиксированной длительности с использованием метода максимума апостериорной вероятности в качестве решающего правила;

решена задача и программно реализована процедура оценивания длительности мертвого времени в потоке событий при его частичной наблюдаемости с использованием метода моментов.

Теоретическая значимость исследования обоснована тем, что:

сформулированы и доказаны леммы и теоремы, на основе которых аналитически решены задачи оптимальной оценки состояний обобщенного синхронного дважды стохастического потока событий второго порядка, функционирующего при его полной и частичной (ввиду наличия непродлевающегося мертвого времени фиксированной длительности) наблюдаемости;

сформулированы и доказаны леммы и теоремы, на основе которых аналитически решены задача оценки параметров распределения длительности интервала между событиями при условии, что все события входящего потока доступны наблюдению, и задача оценки периода ненаблюдаемости в потоке событий;

применительно к проблематике диссертации результативно использован аппарат имитационного моделирования, способствующий в том числе тому, что предложен алгоритм аппроксимации реального трафика обобщенным синхронным потоком второго порядка;

изложены теоретические результаты, вносящие существенный вклад в развитие теории дважды стохастических потоков событий.

Значение полученных соискателем результатов исследования для практики подтверждается тем, что:

разработаны алгоритмы и процедуры, которые могут применяться при анализе функционирования и при проектировании телекоммуникационных систем и сетей;

разработаны алгоритмы и процедуры, которые могут применяться при адаптации реальных систем (системы сотовой и спутниковой связи, телекоммуникационные и компьютерные сети и др.) к информационным потокам;

сформулированы научные результаты, используемые в учебном процессе Национального исследовательского Томского государственного университета в курсах лекций образовательных дисциплин «Имитационное моделирование» — для студентов 4 курса (бакалавриат), «Оценка состояний дважды стохастических потоков событий», «Оценка параметров дважды стохастических потоков

событий», «Методы идентификации и оценки параметров телекоммуникационных потоков» — для студентов 2-го года обучения (магистратура) Института прикладной математики и компьютерных наук.

Рекомендации об использовании результатов диссертационного исследования. Результаты диссертационного исследования могут применяться в отраслях науки и техники при анализе и проектировании автоматизированных систем управления, телекоммуникационных и вычислительных систем и сетей, их адаптации к реальным информационным потокам сообщений. Теоретические положения могут быть востребованы при обработке результатов физических экспериментов, полученных с учетом эффекта мертвого времени регистрирующих приборов. Полученные результаты могут быть использованы в учебном процессе Белорусского государственного университета (г. Минск), Новосибирского национального исследовательского государственного университета, Сибирского федерального университета, Российского университета дружбы народов (г. Москва), также в научно-исследовательских институтах и проектных организациях: Институте проблем управления им. В.А. Трапезникова РАН (г. Москва), Институте проблем передачи информации им. А.А. Харкевича РАН (г. Москва), Институте прикладной математики Дальневосточного отделения РАН (г. Владивосток).

Оценка достоверности результатов исследования выявила:

корректно использованы методы исследования, расчеты проведены с привлечением аппарата теории вероятностей, теории марковских случайных процессов и теории массового обслуживания, а также методов теории дифференциальных уравнений, математической статистики, математического анализа и линейной алгебры;

установлено соответствие результатов статистических экспериментов, полученных на имитационной модели потока событий, теоретическим положениям диссертационной работы;

установлена согласованность аналитических результатов диссертации с результатами для разработанной ранее модели синхронного дважды стохастического потока первого порядка.

Личный вклад соискателя состоит в: выводе всех аналитических выражений, формул и математических выкладок, доказательстве представленных в диссертации лемм и теорем, получении и анализе аналитических и численных результатов, программной реализации имитационной модели обобщенного синхронного потока событий второго порядка, поддерживающей режимы функционирования потока в условиях отсутствия и наличия непродлевающегося мертвого времени фиксированной длительности, программной реализации разработанных алгоритмов оценивания состояний и параметров распределения, проведении численных экспериментов, в подготовке публикаций и апробации результатов исследования.

Диссертация отвечает критериям, установленным Положением о присуждении ученых степеней для диссертаций на соискание ученой степени кандидата наук, и, в соответствии с пунктом 9 Положения, является научно-квалификационной работой, в которой содержится решение научной задачи оценивания состояний, параметров распределения и длительности мертвого времени в обобщенном синхронном потоке событий второго порядка, имеющей значение для развития областей науки и техники, в которых используются математические модели дважды стохастических потоков событий.

На заседании 12.02.2020 диссертационный совет принял решение присудить Сидоровой Е. Ф. ученую степень кандидата физико-математических наук.

При проведении тайного голосования диссертационный совет в количестве 15 человек, из них 8 докторов наук по специальности 05.13.01 — Системный анализ, управление и обработка информации (в отраслях информатики, вычислительной техники и автоматизации), физико-математические науки, из 21 человека, входящего в состав совета, проголосовал: за — 15, против — нет, недействительных бюллетеней — нет.

Председатель

диссертационного совета

Ученый секретарь

диссертационного совета

Горцев Александр Михайлович

Тарасенко Петр Феликсович

12.02.2020